Our molecular rotor - o-MeO-DMBI on Au(111)

 (Measurements April 2018)

DMBI on $\mathrm{Au}(111)$

Figure 1. (a) Formation of the radical o-MeODMBI compound by evaporation and (b) overview image of a submonolayer of o-MeO-DMBI molecules on the surface. The inset shows the main crystallographic directions. (image size: $40 \mathrm{~nm} \times 20 \mathrm{~nm} ; \mathrm{V}=-0.4$ $\mathrm{V} ; \mathrm{I}=60 \mathrm{pA}$)

DMBI on Au(111) - (Lateral Manipulation)

Figure 2. (a) Close-up image of two molecules on $\mathrm{Au}(111)$. By lateral manipulation (marked with the white arrow, parameters: $\mathrm{I}=5.0 \mathrm{nA} ; \mathrm{V}=0.01 \mathrm{~V}$) the molecules rotate around one point. The rotation can be clearly seen in (b). Figure (c) is an overlay of (a) and (b) pointing out the anchoring point. Figure (d) is showing the sketch of the anchored molecule.

Vertical manipulation of DMBI on Au(111)

Figure . (a) - (f) Close-up images of two DMBI molecules. It was possible to rotate step by step the molecule via voltage pulses at the position marked with the black cross. (Manipulation parameters: $V_{\text {bias }}=0.7 \mathrm{~V}$ and $I=0.1 \mathrm{nA}$ up to 0.5 nA ; Image size: 8 nm $\times 4.5 \mathrm{~nm}$; Image conditions: $V_{\text {bias }}=0.5 \mathrm{~V}$ and $\left.I=80 \mathrm{pA}\right)$.

DMBI as a gear on $\mathrm{Au}(111)$

Figure . (a) - (d) In this series the upper molecule was rotated by voltage pulses(position marked with black cross) to induce also a rotation in the second molecule. As seen in (d) the lower molecule did not rotated, but the other molecule flipped back into its initial position. (Manipulation parameters: $\boldsymbol{V}_{\text {bias }}=2.0 \mathrm{~V}$ and $\boldsymbol{I}=0.1$ nA up to 0.5 nA ; Image size: $10 \mathrm{~nm} \times 4.4 \mathrm{~nm}$; Image conditions: $\boldsymbol{V}_{\text {bias }}=0.5 \mathrm{~V}$ and $\boldsymbol{I}=$ 30 pA).

DMBI on Au(111)

Figure. Formation of the radical o-MeO-DMBI compound by evaporation

Figure. Coverage actual preparation ($0.2 \mathrm{~V} ; 100 \mathrm{pA} ; 60 \mathrm{~nm} \times 25 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an S-enantiomer

Clockwise rotation:
(Parameters:
bias 1.0 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

Clockwise rotation:
(Parameters:
bias 1.0 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V ; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

Clockwise rotation:
(Parameters:
bias 1.0 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V ; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an S-enantiomer

Clockwise rotation:
(Parameters:
bias 1.0 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V ; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an S-enantiomer

	Clockwise rotation: (Parameters: bias 1.0 V ; current: $500 \mathrm{pA} ;$ Closed FB-loop)
	-cross marks the voltage pulse position
	Image: $(0.2 \mathrm{~V} ; 100 \mathrm{pA} ;$ $10 \mathrm{~nm} \times 10 \mathrm{~nm})$

DMBI on $\mathrm{Au}(111)$ - Rotation of an S-enantiomer

Counterclockwise rotation: (Parameters:
bias -1.0 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an S -enantiomer

Counterclockwise rotation: (Parameters:
bias -1.0 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an S -enantiomer

Counterclockwise rotation: (Parameters:
bias -1.0 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an S-enantiomer

Counterclockwise rotation: (Parameters:
bias -1.0 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Clockwise rotation: (Parameters:
bias - 0.7 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Clockwise rotation: (Parameters:
bias - 0.7 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Clockwise rotation: (Parameters:
bias - 0.7 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

Clockwise rotation: (Parameters:
bias - 0.7 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Clockwise rotation: (Parameters:
bias - 0.7 V; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Counterclockwise rotation: (Parameters:
bias 0.7 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Counterclockwise rotation: (Parameters:
bias 0.7 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Counterclockwise rotation: (Parameters:
bias 0.7 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Counterclockwise rotation: (Parameters:
bias 0.7 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Rotation of an R-enantiomer

Counterclockwise rotation: (Parameters:
bias 0.7 V ; current: 500 pA ; Closed FB-loop)
-cross marks the voltage pulse position

Image: (0.2 V; 100 pA ; $10 \mathrm{~nm} \times 10 \mathrm{~nm}$)

-retracting by $6 \AA$ and applying $\pm 3 \mathrm{~V}$ did not lead to any rotation (not purely field effect)
-first events seen at $\pm 0.3 \mathrm{~V}$

DMBI on $\mathrm{Au}(111)$ - Attaching a single Au -atom

Au-atom production:
normal tip form procedure (tip approach $0.6-0.8 \mathrm{~nm}$)

Au-atom manipulation:
-starting from 8 nA and 10 mV going up to 12 nA (for $\mathrm{I}>10 \mathrm{nA}$; preamplifier
 gain from 10^{9} to 10^{8})
-able to attach Au-atoms to organic molecules

Image: (0.2 V; 100 pA ; $20 \mathrm{~nm} \times 10 \mathrm{~nm}$)

DMBI on Au(111) - Attaching a single Au-atom

-comparison molecule without Au and with Au -atom
-after attaching Au-atom rotation not possible
-voltage pulses up to $\pm 2.5 \mathrm{~V}(500 \mathrm{pA})$
-at 3.0 V destroy the molecule

Image: (0.2 V; 100 pA ; $5 \mathrm{~nm} \times 5 \mathrm{~nm})$

-comparison molecule without Au and with Au-atom
-after attaching Au-atom rotation not possible
-voltage pulses up to $\pm 2.5 \mathrm{~V}(500 \mathrm{pA})$
-at 3.0 V destroy the molecule
Image: (0.2 V; 100 pA ; $5 \mathrm{~nm} \times 5 \mathrm{~nm}$)

DMBI on $\mathrm{Au}(111)$ - Attaching a single Au-atom

Images: (0.2 V; $100 \mathrm{pA} ; 5 \mathrm{~nm} \times 5 \mathrm{~nm}$); Manipulation parameter: ($10 \mathrm{mV} ; 4 \mathrm{nA}$)

- lateral manipulation of molecules with attached Au-atom
-rotation of the Au-molecule complex not possible

