MANIPULATION OF A MOLECULAR ROTOR BASED ON O-MEO-DMBI

https://cfaed.tu-dresden.de/francesca-moresco-group

O-MEO-DMBI ROTOR

600 Rotation events by applying a voltage pulse at constant current. *Parameters:*

Vb = [0.4; 0.5; 0.7; 1.0; 1.2]V

lt = [100; 200; 300; 400; 500]pA

OBSERVED STATES

Complete set with hexagonal symmetry

OBSERVED STATES

Initial state:	А		Initial state:	В		Initial state:	С	
# observations:	135		# observations:	95		# observations:	142	
Final state	Freq.	Δθ [°]	Final state	Freq.	Δθ [°]	Final state	Freq.	Δθ [°]
В	54.8%	62	С	67.4%	59	D	87.3%	61
С	44.4%	121	D	18.9%	120	E	9.9%	128
I	0.7%	36	D	10.970	120	Н	0.7%	29
	0.770	50	Н	10.5%	88	F	0.7%	180
			G	1.1%	268	G	0.7%	209
			Indefinite	2.1%		Indefinite	0.7%	

In 4 ocassions (0.7%) the molecule was observed to made a CCW turn in a single step

TRACKING OF A SWITCHING EVENT

Tracking signals for a switching event (V = 0.7 V, I = 100 pA)

Events that happened instantaneously (t<0.02) were not considered for the statistical analysis. This accounts for 129 observations (21.5%)

STATISTICAL ANALYSIS

Assumption:

$$f(t) = \lambda e^{-\lambda t} u(t)$$
$$E[T] = \lambda$$

Goal: Obtain Maximum Likelihood Estimator of $\boldsymbol{\lambda}$

$$\lambda_0 = \frac{N}{\sum t_i}$$
$$Var[\hat{\lambda}] = \frac{\lambda_0^2}{N}$$

RESULTS: EFFECT OF INITIAL STATE AND VOLTAGE

Projected threshold at 0.35V

RESULTS: EFFECT OF CURRENT

Variation of the switching rate against the current Switching yield vs. tunnelling resistance

CONCLUSIONS

- O-MeO-DMBI makes CW turns, hopping between 6 observed adsorption states—although some exceptional CCW turns occurred. The adsorption states follow the hexagonal symmetry of the Au(111) surface.
- Upon application of a voltage pulse, the molecule stays in its initial state for a short time before hopping to the next state. This residence time varies with the initial state and the applied voltage, but its dependence on the current is rather weak.

Images: (0.2 V; 20 pA; 10 nm x 5 nm); 15 K

- starts rotation above 9.5 K
- want to adjust temperature that we see single rotation steps or complete rotation
- not all six orientations seems to be present

Images: (0.2 V; 100 pA; 5 nm x 5 nm); 20 K

- full rotation of the left molecule
- other molecules do not fulfill the full rotation depending on adsorption position
- not all six orientations seems to be present

Images: (0.2 V; 100 pA; 5 nm x 5 nm); 20 K

- full rotation of the left molecule
- other molecules do not fulfill the full rotation depending on adsorption position
- not all six orientations seems to be present

 molecules with different chiralities imaged at different biases at 20 K (up-right molecule: R-enantiomer; low-left molecule: S-enantiomer)

Images: (100 pA; 7.5 nm x 7.5 nm); 20 K

27 April 2018 | DMBI | Frank Eisenhut | 13

Images: (100 pA; 7.5 nm x 7.5 nm); 20 K

27 April 2018 | DMBI | Frank Eisenhut | 14

Images: (20 pA; 25 nm x 25 nm); 200mV

- Molecules start to rotate at ~ 9.5K
- Several preferred orientations, no full rotation: preferred adsorption angles?
- Adsorption individually different
- Fast small (4 nm, 3 s) images show positions, but very fast movement

27 April 2018 | DMBI | Frank Eisenhut | 15