MANIPULATION OF A MOLECULAR ROTOR BASED ON O-MEO-DMBI

DRESDEN
concept

O-MEO-DMBI ROTOR

600 Rotation events by applying a voltage pulse at constant current.
Parameters:
$\mathrm{Vb}=[0.4 ; 0.5 ; 0.7 ; 1.0 ; 1.2] \mathrm{V}$
It $=$ [100; 200; 300; 400; 500]pA

OBSERVED STATES

Complete set with hexagonal symmetry

OBSERVED STATES

Initial state:	A		Initial state:	B		Initial state:	C	
\# observations:	135		\# observations:	95		\# observations:	142	
Final state	Freq.	$\Delta \theta\left[{ }^{\circ}\right]$	Final state	Freq.	$\Delta \theta\left[{ }^{\circ}\right]$	Final state	Freq.	$\Delta \theta\left[{ }^{\circ}\right]$
B	54.8\%	62	C	67.4\%	59	D	87.3\%	61
C	44.4\%	121	D	18.9\%	120	E	9.9\%	128
						H	0.7\%	29
1	0.7\%	36	H	10.5\%	88	F	0.7\%	180
			G	1.1\%	268	G	0.7\%	209
			Indefinite	2.1\%		Indefinite	0.7\%	

In 4 ocassions (0.7%) the molecule was observed to made a CCW turn in a single step

TRACKING OF A SWITCHING EVENT

Tracking signals for a switching event $(\mathrm{V}=0.7 \mathrm{~V}, \mathrm{I}=100 \mathrm{pA})$

Events that happened instantaneously ($t<0.02$) were not considered for the statistical analysis. This accounts for 129
observations (21.5\%)

STATISTICAL ANALYSIS

Assumption:

$$
\begin{gathered}
f(t)=\lambda e^{-\lambda t} u(t) \\
E[T]=\lambda
\end{gathered}
$$

Goal: Obtain Maximum Likelihood Estimator of λ

$$
\begin{gathered}
\lambda_{0}=\frac{N}{\sum t_{i}} \\
\operatorname{Var}[\hat{\lambda}]=\frac{\lambda_{0}^{2}}{N}
\end{gathered}
$$

RESULTS: EFFECT OF INITIAL STATE AND VOLTAGE

Projected threshold at 0.35 V

RESULTS: EFFECT OF CURRENT

Variation of the switching rate against the current

Switching yield vs. tunnelling resistance

- $Y(R)$ Logarithmic $(Y(R))$

CONCLUSIONS

- O-MeO-DMBI makes CW turns, hopping between 6 observed adsorption states—although some exceptional CCW turns occurred. The adsorption states follow the hexagonal symmetry of the $A u(111)$ surface.
- Upon application of a voltage pulse, the molecule stays in its initial state for a short time before hopping to the next state. This residence time varies with the initial state and the applied voltage, but its dependence on the current is rather weak.

Images: (0.2 V; $20 \mathrm{pA} ; 10 \mathrm{~nm} \times 5 \mathrm{~nm}$); 15 K

- starts rotation above 9.5 K
- want to adjust temperature that we see single rotation steps or complete rotation
- not all six orientations seems to be present
- DMBI on $\mathrm{Au}(111)$ - Heating to induce rotation (20 K)

Images: (0.2 V; $100 \mathrm{pA} ; 5 \mathrm{~nm} \times 5 \mathrm{~nm}$); 20 K

- full rotation of the left molecule
- other molecules do not fulfill the full rotation
depending on adsorption position
- not all six orientations seems to be present
- DMBI on $\mathrm{Au}(111)$ - Heating to induce rotation (20 K)

Images: (0.2 V; $100 \mathrm{pA} ; 5 \mathrm{~nm} \times 5 \mathrm{~nm}$); 20 K

- full rotation of the left molecule
- other molecules do not fulfill the full rotation
depending on adsorption position
- not all six orientations seems to be present
- DMBI on $\mathrm{Au}(111)$ - Heating to induce rotation (20 K)
- molecules with different chiralities imaged at different biases at 20 K (up-right molecule: R-enantiomer; low-left molecule: S-enantiomer)

Images: (100 pA; $7.5 \mathrm{~nm} \times 7.5 \mathrm{~nm}$); 20 K

- DMBI on Au(111) - Heating to induce rotation (20 K)

Images: (100 pA; $7.5 \mathrm{~nm} \times 7.5 \mathrm{~nm}$); 20 K

- DMBI on $\mathrm{Au}(111)$ - Heating to induce rotation

- Molecules start to rotate at $\sim 9.5 \mathrm{~K}$
- Several preferred orientations, no full rotation: preferred adsorption angles?
- Adsorption individually different
- Fast small (4 nm, 3 s) images show positions, but very fast movement

