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Abstract
Blood is the most encountered type of biological evidence in violent crimes and contains pertinent information to a forensic 
investigation. The false presumption that blood encountered at a crime scene is human may not be realised until after costly 
and sample-consuming tests are performed. To address the question of blood origin, the novel application of visible-near 
infrared hyperspectral imaging (HSI) is used for the detection and discrimination of human and animal bloodstains. The 
HSI system used is a portable, non-contact, non-destructive method for the determination of blood origin. A support vector 
machine (SVM) binary classifier was trained for the discrimination of bloodstains of human (n = 20) and five animal spe-
cies: pig (n = 20), mouse (n = 16), rat (n = 5), rabbit (n = 5), and cow (n = 20). On an independent test set, the SVM model 
achieved accuracy, precision, sensitivity, and specificity values of 96, 97, 95, and 96%, respectively. Segmented images 
of bloodstains aged over a period of two months were produced, allowing for the clear visualisation of the discrimination 
of human and animal bloodstains. The inclusion of such a system in a forensic investigation workflow not only removes 
ambiguity surrounding blood origin, but can potentially be used in tandem with HSI bloodstain age determination methods 
for rapid on-scene forensic analysis.

Keywords Animal blood · Hyperspectral imaging (HSI) · Support vector machine (SVM) · Neighbourhood component 
feature selection (NCFS) · Forensics

Introduction

Blood is one of the most readily examined substances of the 
human body, playing a key role in investigative forensic sci-
ence. A single drop of blood contains valuable information, 
such as its DNA, chemical composition, and morphology of 
associated bloodstains on surfaces. This information, along 
with bloodstain pattern analysis, can be utilised to recon-
struct the events of a violent crime [1].

Basic characteristics of blood found at a crime scene are 
determined using serological presumptive tests, such as the 
Kastle-Meyer [2] and luminol tests [3]. These are fast, cheap, 
and efficient tests used in the discrimination of suspected 
blood from other substances of similar appearance. Luminol 
can detect highly diluted blood samples (10,000-fold) due to 
the efficient catalysation of chemiluminescence by the iron 
present in haemoglobin. Despite its sensitivity, luminol is 
limited by its non-specific reaction to other oxidants such as 
bleaches, or certain food such as horseradish. Problems with 
the interpretation of bloodstain patterns can occur if injured 
or killed animals (e.g. pets or wild animals) are also present 
at the crime scene [4]. Tests that use monoclonal anti-human 
Hb antibodies are available for the detection of the human 
origin of blood (e.g. Hexagon  OBTI® [5]); however, cor-
responding tests for the differentiation of different animal 
blood are lacking. The main drawback to these preliminary 
tests is their destructive nature [6]. In addition, immunoas-
says are prone to false positives, as certain animal haemo-
globin is very similar to human haemoglobin.
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Advanced analytical methods have become increasingly 
predominant in forensic sciences. Mass spectrometry and 
chromatography techniques have become commonplace in 
toxicology labs, and spectroscopic methods such as Raman 
spectroscopy, UV–vis spectroscopy, and Fourier transform 
infrared spectroscopy (FT-IR) have proven themselves in 
the analysis of blood [7–10]. These methods are often less 
destructive, or non-destructive, with less sample prepara-
tion when compared to presumptive tests [6]. Reflectance 
spectroscopy has the benefits of being a non-destructive 
method, with modern portable spectrometers enabling fast 
on-scene analysis. Nevertheless, reflectance spectroscopy 
is limited by long initial analysis times, which includes 
the identification and validation of characteristic sample 
biomarkers observed in a given sample’s reflectance spec-
trum. Furthermore, there is a high level of interpretation 
required to build classification and regression models for 
the respective identification and age estimation of a foren-
sic sample for use outside of the laboratory environment.

In this paper, the need for a cheap and fast method to 
differentiate blood of unknown origin is addressed by the 
use of the non-contact modality hyperspectral imaging  
(HSI), coupled with chemometric methods to build a  
classification model that successfully discriminates human 
and animal bloodstains. HSI combines conventional imag-
ing with spectroscopy, giving two-dimensions of spatial 
(x, y) and one dimension of spectral information (λ). The 
power of HSI lies in the ability to obtain a continuous 
spectrum for each pixel of a captured image. HSI has 
already been proven as an effective tool in various appli-
cations of forensic science including but not limited to air-
borne identification of unmarked graves [11, 12], detection 
of explosive residues [13], and for the non-contact analysis 
of forensic traces [14]. Concerning blood and bloodstain 
analysis by HSI, the determination of human bloodstain 
age is predominant [15–20]. While the determination of 
bloodstain age using HSI can objectively have greater 
value in a forensic investigation of a violent crime, the 
fact remains that the determination of blood origin is once 
again overlooked in the literature.

A controlled study using human blood and blood obtained 
from five common domestic animal species deposited onto 
white cotton was used as a preliminary investigation into 
the ability of visible-near infrared (vis–NIR) HSI to dis-
criminate human and non-human bloodstains. Chemomet-
ric and machine learning methods were used to investigate 
and develop a binary human-animal classifier based on the 
reflectance HSI data. Image segmentation was performed 
on the captured colour images using a background detection 
algorithm in tandem with the trained classifier, effectively 
visualising the colour-coded discrimination of human versus  
animal bloodstains. The portable HSI system coupled to the 
human-animal classifier demonstrates the potential of this 

modality to significantly speed-up forensic investigation 
with on-site measurement capability.

Materials and methods

HSI system and acquisition

The commercial Specim  IQ® (Specim, Spectral Imaging 
Ltd., Oulu, Finland) was used for the capturing of hyper-
spectral images. This system features a push-broom scan-
ner producing hypercubes in the range of 400–1000 nm 
with a spectral resolution of 7 nm (204 spectral bands, 
λ-axis). The number of effective pixels is 512 × 512 pix (x-, 
y-axis) and the camera fore optic provides a field of view 
of 31 × 31 degrees. Therefore, at a measurement distance 
of 30 cm between the camera and sample, a viewable area 
of 16.4 × 16.4 cm results in a theoretical maximum spatial 
resolution of 0.32 mm. Illumination was achieved using two 
tungsten-halogen broadband light sources (750 W each). The 
default recording mode with simultaneous white reference 
method, in which the white reference panel is measured 
alongside the target sample, was used for data acquisition. 
An integration time of 10 ms was used giving a recording 
time of 35 ms per hypercube. The reflectance data cube is 
calculated using the relation:

where R is the reflectance, RAW is the raw data of light 
intensities measured, Dark is the instrument dark frame, 
which is the sensor baseline signal due to the camera elec-
tronics, White is the white reference plate intensity, and i 
and j are horizontal and vertical pixel indices, respectively. 
To reduce the interference, all external light sources includ-
ing room lights were switched-off during image recording.

Human and animal blood samples

Venous blood from 20 healthy human volunteers (10 male, 
10 female, age 42 ± 16 years) was obtained from the Institute 
for Transfusion Medicine, University Hospital Leipzig. Only 
age and sex of the blood donor are known, with an identifi-
cation number being used to pseudo-anonymise the donors. 
The 1.7 mL blood aliquots were collected into EDTA and 
refrigerated to avoid coagulation prior to measurement.

Blood from 20 pigs was obtained from Slaughterhouse 
Weiβenfels, Weiβenfels, in EDTA 1.7 mL aliquots. Venous 
blood from 20 cows was obtained from the Clinic for 
Hooved Animals, Faculty of Veterinary Medicine, Leipzig 
University in EDTA 1.7 mL aliquots. Cardiac blood from 16 
mice (5 female CD1/CR, 5 male CD1, 6 female Sv129) was 

Rij(�) =
RAWij − Darkij

Whiteij



Forensic Science, Medicine and Pathology 

1 3

obtained from the Medical Experimental Centre III, Uni-
versity Hospital Leipzig, in EDTA 1.7 mL aliquots. Venous 
blood from 5 rats (3 female, 2 male SPRD) and venous blood 
from 5 rabbits (1 female, 1 male White New Zealand; 1 
male, 2 female Chinchilla bastard) was obtained from the 
Medical Experimental Centre I, University Hospital Leipzig, 
in EDTA 1.7 mL aliquots.

All blood samples were transported to the Institute for 
Legal Medicine, University Leipzig, where the blood was 
then deposited onto white cotton fabric creating spots of ca. 
5  cm2 which was let dry at room temperature for 10 min. 
Samples that were stored under refrigeration were allowed 
to warm to room temperature prior to probe preparation. The 
hyperspectral images were recorded using the SPECIM  IQ® 
camera under halogen light. The samples were left exposed 
under ambient conditions and recorded once daily for a 
week, and then intermittently up to 2 months. The data is 
summarised in Table 1 below.

Classification framework

The aim of the classification was the automatic identification 
and segmentation of blood with respect to human and animal 
blood using HSI. The classification framework is summa-
rised in Fig. 1 below. HSI data was annotated using GIMP 

(The GIMP development Team, 2019) to create regions of 
interest (ROI) of the blood samples consisting of approxi-
mately 25 × 25 pixels. Microsoft Excel (Microsoft Corpora-
tion 2019) was used for the documentation and analysis of 
results. Data balancing and data pre-processing were per-
formed using custom scripts written in MATLAB (version 
9.8; R2020a, The MathWorks Inc.), with machine learning 
algorithm selection and optimisation being performed using 
the Statistics and Machine Learning Toolbox™ and Imaging 
Processing Toolbox™, both being provided by MATLAB.

Data balancing and pre‑processing

The species classes include different numbers of individuals 
and recorded HSI images which in turn lead to drastically 
different numbers of spectra per class. To build an unbiased 
classification model, the data was balanced using under-
sampling; that is, observations from the majority class were 
randomly excluded to decrease its size to be comparable to 
that of the minority class. In addition, to build a classifica-
tion model that is independent of sample age, the data must 
be logically distributed to equally represent changes in the 
blood spectra with time. As the effect of time on blood com-
position is the most explored method in age determine of 
bloodstains [6, 17, 21], the effect of time on the absorption 
ratio of blood components is well documented. The ROIs 
were divided into bins that follow the natural exponential 
series f(x) = ex where x = 0, 1, 2, 3 and f(x) = 1, 2.718, 7.389, 
20.086. This gives the time interval bins: 0.0–1.0, 1.0–3.0, 
3.0–7.0, 7.0–20.0, and 20.0–55.0 days. This was in order 
to capture the exponential-like decrease in haemoglobin 
derivatives oxyhaemoglobin (HbO2), and increase in meth-
aemoglobin (metHb) and haemachrome (HC) with respect 
to degradation over time [17]. Within each species class, 
the age group bins were first balanced using undersampling 
to that of the least represented bin. The animal classes were 
then balanced with respect to each other, so each species was 
equally represented, before balancing to the human class by 

Table  1  Unbalanced dataset of human and animals, including sample 
age range, number of recorded HSI images, ROIs, and total spectra

Sample 
No

Age 
[days]

HSI 
images

No. ROIs Tot. 
spectra

Human 20 0.1–32 21 103 231,075
Animal 66 0.1–49 59 250 454,450
Pig 20 0.1–42 8 83 180,000
Mouse 16 0.1–24 18 64 45,075
Rat 5 0.1–49 12 18 35,750
Rabbit 5 0.1–49 12 18 50,625
Cow 20 0.1–42 9 67 145,000

Fig. 1  Classification framework for HSI data cubes of human and animal bloodstains
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the random exclusion of animal observations, maintaining 
age group distribution. Human observations were assigned 
the binary response 1, while all animal observations were 
assigned the binary response 0, thus forming the two classes.

The spectral window of 400–1000  nm (204 spectral 
bands) was initially truncated to 435–965 nm due to the 
low camera sensitivity and low power of the halogen light 
source beyond this range [18]. A Savitzky-Golay filter [22] 
with polynomial order of two and window length of nine 
spectral bands was implemented to smooth the reflectance 
spectra giving an effective wavelength range of 445–955 nm 
(169 spectral bands). Spectra were then normalised using 
the SNV transform [23], which auto-scales the data giving a 
mean reflectance of zero and standard deviation of one. The 
SNV reflectance spectra were then used in feature selection 
before the training of classification models.

Feature selection

Neighbourhood component feature selection (NCFS) is a 
neighbour-based feature weighting algorithm proposed by 
Yang et al. [24]. NCFS was implemented to reduce data 
dimensionality and identify regions of interest in the blood 
spectra that contribute to the successful discrimination of 
human and animal blood. The stochastic gradient descent 
(SGD) solver algorithm, with solver-batch size of 1000 
observations, was used to estimate feature weights. The ini-
tial learning rates were turned with a subset size of 10,000 
observations. The best value for the regularisation parameter 
λ that minimises the generalisation error is expected to be a 
multiple of the inverse of the number of observations n. 
Given the large number of observations in the training set 
(144,020 spectra), the expected value is λ = 6.943 ×  10−6 and 
therefore can be approximated as zero. Without a regularisa-
tion parameter, all features have a weight greater than 0, and 
therefore, a feature weight threshold was implemented. 

Thresholds of 0.5, 0.55, 0.6, 0.65, 0.70, and 0.75 times the 
maximum feature weight were used to select 92, 68, 43, 34, 
26, and 16 of the most important wavelengths as determined 
by the NCFS algorithm. These features were then used to 
train simple k-Nearest Neighbour classifiers (k = 1) of the 
training set. The 1-Nearest Neighbour algorithm was chosen 
for its simplicity, speed of training, and non-parametric 
nature, leading to the effective evaluation of best feature 
selection. The trained 1-Nearest Neighbour classifiers were 
evaluated based on their F1 scores. The F1 score is: 
F
1
= 2 ×

precision×recall

precision+recall
 , and arguably captures the model’s 

performance better than the accuracy, recall, and precision 
values individually.

Background detection

Prior to image classification, a decision tree algorithm for 
background detection was implemented. The definitions of 
the wavelength parameters A, B, and C of the algorithm 
background detection [25] (ABD, Fig. 2) were modified 
from their original application in biomedical tissue analysis 
to exclude all background information in the HSI images 
except for the bloodstains.

The algorithm parameters A, B, and C attempt to exclude 
spectra that have features that are not characteristic to blood 
and bloodstains. Parameter A removes constant high-valued 
reflectance spectra, such as the white cloth deposition sur-
face. Parameter B is based on the Q-bands of haem, which 
are predominant low-reflectance in spectra of blood. Param-
eter C attempts to capture the proportionality between the 
low-reflectance region of the haem Q-bands and the high-
reflectance far-red region of a typical blood reflectance spec-
trum. The parameter threshold values A < 0.6, B > 0.05, and 
C > 1.7 were empirically determined as the optimum values 
for background detection. The image morphological noise 

Fig. 2  Modified algorithm back-
ground detection [25] (ABG) 
to detect background prior to 
classification
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removal technique “closing” was performed on the ABD 
binary gradient mask.

Classification

The data was split into training and test sets as per Table 2. 
This was further randomly divided into 66% validation 
and 34% test set to be used in the validation of optimised 
models and the final chosen model, respectively.

Five binary classification algorithms were initially 
tested using 10-fold cross-validation: SVM with poly-
nomial and Gaussian kernels, decision tree, bagged tree, 
and k-NN. The models were assessed based on their F1 
scores and area under the ROI curves (AUC). The SVM 
with polynomial kernel, bagged tree, and k-NN models 
were selected for further optimisation of the classifier 
model parameters. Bayesian optimisation was imple-
mented, which attempts to minimise an objective func-
tion f(x) for x by using an acquisition function a(x) to 
determine the next hyperparameter point for evaluation. 
The acquisition function “expected-improvement-per-
second-plus” was used to evaluate the goodness of fit 
[26, 27]. Thirty iterations were used to evaluate the mod-
els with Bayesian optimisation. For the SVM, the kernel 
scale and box constraint hyperparameters were simulta-
neously optimised. The distance metric and number of 
neighbours were optimised for the k-NN model, while 
the bagged decision tree was optimised based on num-
ber of learning cycles and number of leaves within the 
tree. The optimised models were then tested using the 
validation data and the F1 scores were compared. The 
polynomial SVM was selected for further optimisation, 
and the degree of overfitting estimated using the training 
error, 10-fold cross-validation error, and validation error 
of the 9 “best” iterations as determined by the Bayesian 
optimisation algorithm. The optimal SVM model was 
selected based on the mean-plus-1 standard error of the 
smallest mean cross-validation error.

Results

Feature selection

To identify spectral bands of greatest interest as determined 
by the NCFS algorithm in a typical blood spectrum, the 
average SNV reflectance human blood spectrum was plot-
ted as a secondary axis (black) to the feature weights (red) 
(see Fig. 3). Threshold values of between 50 and 80%, in 
increments of 5% of the feature of maximum weight (feature 
80, weight = 26.12), were used to select the most important 
wavelengths for use in further classification. Six k-NN mod-
els where k = 1 were trained using the threshold values and 
the model statistics compared to a k-NN classification model 
without feature selection (threshold = 0, 170 wavelengths). 
The effect of information loss with fewer features resulting in 
more misclassifications is reflected in the F1 scores presented 
in Table 3 below. Comparing to model 1 without feature selec-
tion, there is a 2.8% decrease in F1 score with model 3, which 
has a feature weight threshold of 0.55. Model 4 has a relative 
decrease of 2.3% compared to model 3. In addition, model 
3 reduces the data dimensionality by 60% from 170 to 68 
features, which is 15% greater than model 2 of 92 features. 
Therefore, the optimal threshold value of 0.55 with 68 features 
(wavelengths) was selected for use in further classification 
model development, as this is the best trade-off between data 
reduction and information retention.

Bayesian optimisation

Bayesian optimisation was used to optimise hyperparam-
eters of k-NN, bagged tree, and SVM models with 10-fold 
cross-validation. The acquisition function “expected-
improvement-per-second-plus” was used to evaluate 
the next hyperparameter point for evaluation. The best 
observed feasible point of each of the k-NN, bagged tree, 
and SVM models as determined by the Bayesian optimisa-
tion are presented in Table 4 below.

The 3rd-order polynomial SVM was determined as the 
best classification model for further evaluation. The further 
optimisation of the SVM was set to run 30 iterations but was 
prematurely terminated at 21 iterations for reaching a total 
objective function evaluation time of 150,000 s (41.67 h).

For the final SVM binary classification model, the parameters 
of box constraint = 74.185 and kernel scale = 2.7558 were used as 
per iteration 16 of the Bayesian optimisation (Fig. 4). The retrained 
model was tested with the independent test set (19,125 observa-
tions) and the model statistics calculated. Presented in Table 5 is 
the model statistics of the predicted test data. This model has an 
accuracy and F1 score above 95% in the discrimination of human 
and animal bloodstains up to 32 and 49 days, respectively.

Table 2  Training set and test set partition with balancing

No Training set Spectra Test set Spectra

Human 20 15 72010 5 28125
Animal 66 53 72010 13 28125
Pig 20 16 14402 4 5625
Mouse 16 13 14402 3 5625
Rat 5 4 14402 1 5625
Rabbit 5 4 14402 1 5625
Cow 20 16 14402 4 5625
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Image classification of bloodstains

The HSI images associated with the test data set were pro-
cessed and classified using the trained SVM binary clas-
sifier. One individual from each of the animal classes and 
one human sample is presented in Figs. 5 and 6 below. The 
colour images are presented in the first row followed by the 
classified images directly under. The presented images are 
taken from the classification bins to illustrate the model’s 

Fig. 3  NCFS feature weights as 
a function of feature index (red 
circles) with threshold lines of 
50% and 80% the maximum 
feature index weight. The 
average human blood spectrum 
is plotted as a secondary axis 
(black; x-axis wavelength [nm], 
y-axis SNV reflectance [a.u.]) to 
guide the eye

Table 3  NCFS k = 1, k-NN model F1 scores to determine the opti-
mal number of features based on the prediction of the validation set. 
Model no. 3 with threshold of 0.55 and 68 wavelengths was chosen as 
optimal number of features

Model No. Threshold No. Features F1 score

1 0 170 0.9255
2 0.50 92 0.9125
3 0.55 68 0.8971
4 0.60 43 0.8740
5 0.65 34 0.8487
6 0.70 26 0.8463

Table 4  Results of first Bayesian optimisation for k-NN, bagged tree 
and 3rd-order polynomial SVM including optimised parameter val-
ues, the observed objective function value of 10-fold cross-validation, 
and corresponding F1 score

Model Parameters Objective 
function

F1 score

k-NN No. neighbour
Distance metric

5
Euclidean

0.0118 0.847

Bagged tree Learning cycles 476 0.0143 0.807
3-poly SVM Box constraint

Kernel scale
88.7
1.83

0.0047 0.862
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Fig. 4  Comparison of training loss, CV-loss, and validation loss of 
Bayesian-optimised SVM iterations. Based on mean plus 1 standard 
error for the smallest mean cross-validation error, the parameters of 
iteration 16 are chosen as optimum for the SVM classification model
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performance with respect to aging. Pixels that are classified 
as “human” by the SVM classifier are coloured with a yel- 
low mask, while pixels classified as “animal” are coloured 
with a blue mask. No further image processing was applied 
after SVM classification.

Discussion

As seen in Fig. 3, the red circles of NCFS feature values 
form a feature weight-index curve that illustrates the cor-
relation between wavelengths and their respective impor-
tance in distinguishing human and animal blood reflectance 
spectra. It can be concluded that the wavelength bands of 
most importance (in descending order of feature weight) are 
centred around: 680, 955, 725, 445, 645, 775, and 600 nm. 
These peaks can then be used to infer the contributions of 
blood components to the observed reflectance spectra and 
give an indication of the potential underlying differences 
between human and animal blood. As blood spectra from 
all samples are included in the NCFS calculation, it can be 
assumed that the feature weights are independent of blood 
age and thus spectral differences are attributed to the varying 
composition. This is evident in the alpha and beta Q-bands 
at ca. 550 and 575 nm which are a result of oxy- and deoxy-
haemoglobin derivatives [28], having feature weights below 
50% of the maximum weighted feature by the NCFS algo-
rithm. That being said, the region between 600 and 750 nm is 
often attributed to the derivatives HHb (broad peak 600–700, 
sharp peak at 760 nm) and MetHb at 630 nm.

In building the machine learning models, a train/test split 
method was implemented as model test validation. Ten-fold 
cross-validation was also implemented within the NCFS  
optimisation and validation of the Bayesian-optimised SVM 
iterations. The mean-plus-1 standard error was used in deter-
mining the optimal model which is the least likely to experi-
ence overfitting, and this model was tested on the independent 
test set. An alternative validation method to the train/test split 
validation is the leave-one-out cross-validation (LOOCV). 
Despite LOOCV being a very robust method for testing mod-
els, it is also computationally expensive. In addition, it can 
be assumed that the variation between individual spectra of a 
given bloodstain is less than that between different bloodstains. 
A modified form of LOOCV is the leave-one-patient-out cross-
validation, where the data is divided into folds based on the 
number of individuals in the dataset and the complete data 
from each individual is used in turn as test set. Nevertheless, 
this approach would require significantly more calculation and 
would not be expected to improve the binary classification, 
considering the relatively small differences between 20 blood-
stains (or less) per species.

The optimised SVM classifier has good statistical values for 
the independent test dataset. All major predictors including accu-
racy, precision, sensitivity, specificity, and F1 score are all above 
95% (round up) as per Table 5. The model’s predictive power 
in the discrimination of human and animal blood is evident in 
the correctly classified images of Figs. 5 and 6. The bloodstains 
in general across all species are correctly classified, where the 
human sample is classified yellow signifying the “human” clas-
sification label, and pig, mouse, rat, rabbit, and cow blood are all 

Table 5  Model statistics of SVM binary classifier. TOT total number of observations predicted, PREV prevalence; a measure of class distribu-
tion, ACC  accuracy, PPV positive predictive value or precision, TPR true positive rate or sensitivity, TNR true negative rate or specificity

TOT PREV ACC PPV TPR TNR F1 score

19125 0.4996 0.9564 0.9671 0.9470 0.9663 0.9569

Fig. 5  HSI colour images of fresh bloodstains (0.1 days; top row) and with SVM classification mask (bottom row). The sample species are a 
human, b pig, c mouse, d rat, e rabbit, and f cow. Yellow pixels are classified as “human” and blue as “animal”
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classified blue as “animal”. SVMs perform well in blood discrim-
ination, and are seemingly only out performed by more complex 
neural networks [29]. Książek et al. [30] reported that deep neural 
networks were found to have no clear advantage over SVMs when 
the training and test set came from the same hyperspectral image. 
However, a 9% increase in overall accuracy was obtained for the 
deep learning architectures when the training set and test set was 
derived from different images. This demonstrates the continued 
interest in exploring deep learning methods for effective blood 
discrimination in forensic science. Future extensions of this work 
could evaluate the performance of deep neural networks in com-
parison to established machine learning methods for the determi-
nation of blood origin.

The misclassification on the periphery of the bloodstain 
(Fig. 5c: mouse blood, day 0.1 and Fig. 5d: rat blood, day 
0.1) is most likely the result of capillary flow [31], where  
the edges of the bloodstain appear darker due to the higher 
concentration of haemoglobin and its derivatives. This has 
been observed in bloodstain age studies that used cotton [32] 
as a deposition surface and due to haemolysis with improper 
handling [33]. Nevertheless, for the reflectance measure-
ments in this study, the region of interest was centred in the 
middle of the bloodstain for each sample.

The parameters of the trained SVM could be used as a start-
ing point for the new multi-species classifier, which could also 
include a broader animal dataset. The inclusion of more species 
such as cat, dog, horse, chicken, sheep, goat, fish, and reptiles 
into the animal repertoire would increase the confidence in the 
classifier’s ability to truly discriminate human blood from that 
of any animal. Variables, such as age, dilution, humidity, and 
temperature, should be further explored, as these could influ-
ence the degradation of bloodstains.

The deposition surface of white cotton was selected due 
to its high reflectivity, which aids the visualisation of blood-
stains. It is spectroscopically featureless, meaning there was 
no contribution to the measured vis–NIR reflectance of blood. 
Following fabrics, materials such as wood, stone, ceramics, 

plastics, and metals need to be investigated. This would give 
conclusive insight into the classifiers’ ability to function in any 
given condition encountered at a crime scene. The open-source 
dataset for the evaluation of blood detection by Romaszewski 
et al. [34] could act as a good starting point for this purpose.

The developed classifier could be modified and/or cou-
pled to a separate algorithm for the simultaneous determina-
tion of bloodstain age. In the reconstruction of a crime, one 
of the primary goals of the investigator is the determination 
of the time when a crime is committed. For these reasons, 
there has been significant interest in the research of depos-
ited blood age [35]. Raman spectroscopy [36], IR spectros-
copy [37, 38], and reflectance spectroscopy [32, 39] have all 
been used in blood age determination. In particular, vis–NIR 
HSI similar to that used in this work has been successfully 
used for the age estimation of bloodstains [14, 16, 17].

Conclusions

The novel application of vis–NIR HSI was successfully used 
in the detection and discrimination of human and animal 
bloodstains on white cotton and achieved an F1 score of 
95.7% when classifying the independent test dataset.

The featured HSI system has significant benefits in the 
discrimination of human and non-human bloodstains. Its 
portable, non-contact, and non-destructive nature lends 
itself to forensic investigation, having the capability of on-
site detection and evaluation of forensic evidence. Thus, 
relevant human blood traces can be distinguished from ani-
mal blood traces at the crime scene and preferably secured 
for molecular genetic investigations. This, in turn, reduces 
time and money that would be otherwise lost to lengthy 
laboratory analysis procedures. Such a system could be 
expanded to include blood age-determination methods as 
previously outlined and has the potential to become the 
workhorse of forensic investigation.

Fig. 6  HSI colour images of aged bloodstains (5 weeks; top row) and with SVM classification mask (bottom row). The sample species are a 
human, b pig, c mouse, d rat, e rabbit, and f cow. Yellow pixels are classified as “human” and blue as “animal”
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Key points

1. The recognition and classification of blood traces at 
crime scenes is an important part of forensic case work.

2. The distinction between human and animal blood has 
so far only been possible through sample-consuming 
laboratory tests.

3. Hyperspectral analysis enables the contact-free recogni-
tion and differentiation of such blood traces.

4. The portable SPECIM IQ hyperspectral camera is suit-
able for use at the crime scene and evaluates the traces 
directly on the display.
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