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Abstract 
 

Blood is the most encountered type of biological evidence in violent crimes. It contains 

pertinent information to a forensic investigation, the analysis of such information 

leading to the difference in conviction or not in a court of law. A commonly overlooked 

aspect in bloodstain investigation is the origin of blood, that is, whether it is of human 

or non-human origin. The false presumption that blood encountered at a crime scene is 

human, may not be realised until after costly and time-consuming laboratory analysis is 

performed. Despite recent advancements in analytical and statistical methods – 

including the evermore frequent use of portable spectroscopic imaging systems – the 

main focus of these works has been the estimation of blood deposition age. This once 

again neglects to address the question of blood origin. In this study, the novel 

application of vis-NIR hyperspectral imaging (HSI) is used for the detection and 

discrimination of human and animal bloodstains on white cotton fabric. The HSI system 

is a portable, non-contact, non-destructive method for the determination of blood 

origin. The inclusion of such a system in a forensic investigation workflow not only 

removes ambiguity surrounding blood origin, but can potentially be used in tandem with 

blood age determination methods. Chemometric and machine learning methods are 

implemented to identify spectral regions of importance, and to train a support vector 

machine (SVM) binary classifier in the discrimination of bloodstains. On an independent 

test set, the SVM model achieved accuracy, precision, sensitivity, and specificity values 

of 96, 97, 95, and 96% respectively. Segmented images of bloodstains aged over 50 days 

are produced, allowing for the clear visualisation of human and animal blood. Blood 

components and haematological data are considered in the reasoning for the observed 

spectral differences between species. 
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1.  Introduction 

Blood is one of the most readily examined tissues of the human body, playing a key role 

in the diagnosis of disease, and investigative forensic science. A single drop of blood 

contains valuable information for use in forensic science, such as its chemical 

composition and morphology of the associated bloodstains on surfaces. This 

information, along with blood stain pattern analysis, can be utilised to reconstruct the 

events of a violent crime. A multidisciplinary approach encompassing natural sciences, - 

such as; biology chemistry, mathematics and physics, aid the investigator with the 

interpretation of the circumstances of the incident and qualify the information legally1. 

Results obtained can help differentiate whether bloodshed found at a crime scene is 

deliberate or accidental, or as a result of suicide or murder. In any case, a primary step 

upon arrival to a crime scene is to corroborate if suspect red stains are in fact blood. 

Presumptive tests and DNA analysis (detailed in Section 1.4) are routinely used to detect 

and identify suspicious drops and stains encountered at a crime scene1,2.  

Blood is a common specimen collected in post-mortem forensic examinations, being the 

specimen of choice for detection and quantification of drugs and/or toxicants. 

Determination of substance concentrations in blood is useful for establishing the effect 

a substance might have on the victim at the time of death, or at the time of specimen 

sampling. This analysis can help the forensic investigation decide whether poisoning is 

suspected as a cause of death, or if the prolonged use of prescription medication has 

otherwise complicated the investigation. Nevertheless, due to the degree of 

decomposition and variation in substance concentrations in ante- and post-mortem 

blood, many other specimens are collected for toxicological investigation. These include 

urine, hair, gastric contents, and various organs, amongst others3. 

Blood samples are an undoubtedly crucial asset to forensic investigation, especially in 

the case of a violent crime. However, a commonly overlooked aspect in bloodstain 

identification is determination of the blood stain as human or animal. Unless specific 

wildlife crimes are being investigated4, bloodstains encountered at a crime scene are 

often presumed to be of human origin. In many cases, it is only after obtaining the DNA 

profile with database comparison that the presumed human sample is realised to be of 
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animal origin. This wastes money, resources, and time. Therefore, the need for a cheap 

and fast method to quickly differentiate human and non-human blood has been 

identified. This paper addresses this need by the use of the non-contact modality 

hyperspectral imaging (HSI), coupled with chemometric methods to build a classification 

model that successfully discriminates human and animal blood stains. Even though HSI 

has already been proven as an effective tool in various applications of forensic science5–

8, when it comes to blood and bloodstain analysis, the determination of bloodstain age 

is predominant9–14. While the determination of bloodstain age using HSI can objectively 

have greater value in a forensic investigation of a violent crime, the fact remains that 

the determination of blood origin is once again overlooked in the literature.  

A controlled study using blood of human and 5 common animal species deposited onto 

white cotton was used as a preliminary investigation into the ability of visible-near 

infrared (VNIR) HSI to discriminate human and non-human bloodstains. Chemometric 

and machine learning methods were used to investigate and develop a binary human-

animal classifier based on the reflectance HSI data. Image segmentation was performed 

on the captured RGB images using a background detection algorithm and the trained 

classifier, effectively visualising the discrimination of human versus animal bloodstains. 

The portable HSI system coupled to the human-animal classifier demonstrates the 

potential of this modality to significantly speed-up forensic investigation with on-site 

measurement capability. 

To better understand the trained classifier’s ability to discriminate animal and human 

blood, the constituents and haematology of blood is discussed in the following sections 

(Section 1.1). Subsequently, methods and limitations to current and nascent forensic 

analysis of blood is outlined in Section 1.2. The principles to reflectance spectroscopy 

and HSI are later detailed (Section 1.3), and the theory behind the machine learning 

methods used in this work is provided in Section 1.4.  
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1.1. Blood and its components 

The average adult human carries between four and five litres of blood, continuously 

circulating through the heart, arteries, vessels, and capillaries, and interacting on the 

cellular level with tissues. Blood supplies nutrients and oxygen and in exchange removes 

cellular waste such as carbon dioxide. Several organs act to regulate the nutrient and 

waste content in blood. The lungs act in respiratory exchange, acquiring oxygen and 

releasing carbon dioxide; while the kidneys filter the blood, removing excess water and 

dissolved waste products. Nutrients from food make their way into the blood stream 

through absorption in the gastrointestinal tract, while hormones are released into the 

blood by endocrine system glands.  

Specialised cells and fluids constitute blood. Each have specific physiological functions 

and provide information about an individual’s state of health. Cellular composition of 

blood varies within the animal kingdom. Most invertebrates have relatively few blood 

cells compared to vertebrates, with some simple animals, such as worms or molluscs, 

transporting oxygen directly within the blood plasma. With greater oxygen needs, larger 

animals have blood pigments such as haemoglobin (iron-containing, red-coloured), 

haemocyanin (copper-containing, blue-coloured), chlorocruorin (iron-containing, 

green-coloured), or haemerythrin (iron-containing, red-coloured). Haemoglobin is an 

oxygen-carrying protein commonly found in vertebrates and in some invertebrates. 

Most vertebrates have their haemoglobin stored in erythrocytes or red blood cells 

(RBCs). Haemocyanin is found in some crustaceans, while chlorocruorin and 

haemerythrin are found in some annelids.  

 

 

Figure 1. Blood pigments with associated colour (Left to right): Haem B (deoxygenated form), Haemocyanin 
(oxygenated form; R = histidine), Haemerythrin (oxygenated form), and Chlorocruorin (deoxygenated form). The 
combination of a conjugated system (porphyrin ring of Haem B and Haemocyanin) and the oxygen-binding central 
atom (Iron; Fe or Copper; Cu) modifies the absorption of light within the visible spectrum. 
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Due to the presence of haemoglobin, mammalian blood is a characteristic opaque red 

fluid. Saturated haemoglobin (oxyhaemoglobin, HbO2) and unsaturated haemoglobin 

(deoxyhaemoglobin, Hbb) are of slightly different shades of red, explaining the 

difference seen between the darker, partially deoxygenated, venous blood and the 

brighter, oxygenated arterial blood. The RBCs form approximately 45% of the blood 

volume, with white blood cells (WBCs) and platelets forming less than 1%. The remaining 

volume consists of plasma, a complex solution that is over 90% water.  

 

1.1.1. Plasma 

Plasma serves to transport blood cells, nutrients, and waste products from cellular 

metabolism, maintaining homeostasis of the body. As it is freely exchangeable with 

extracellular fluids and cells, the water within plasma also acts to maintain tissue 

hydration. Proteins are the most abundant plasma constituent by weight (7%), with 

dominant plasma protein being serum albumin (60% of all plasma proteins). Serum 

albumin acts to retain water in the blood via its osmotic effect, and can bind to other 

substances within the plasma as a nonspecific carrier protein. Other plasma proteins 

include globulins such as immunoglobins, which are produced in an immunogenic 

response to foreign antigens or substances. Cytokines are a group of small proteins that 

serve as chemical intracellular messengers, which play a role in the immune system 

response to foreign bodies as well as regulating blood cell formation (haematopoiesis). 

Coagulation proteins and their inhibitors are another group of important plasma 

proteins. Fibrinogen is converted to fibrin when blood clotting is activated, stabilising 

the blood clot. Phospholipids, triglycerides, free fatty acids, and cholesterol are the 

major fraction of total plasma lipids, with lipid concentration within plasma varying with 

meals. Many constituents of plasma occur in low concentrations. Such examples include 

glucose, a key source of energy for cells, and amino acids, a requirement for all protein 

synthesis throughout the body. The greatest contribution of blood plasma to the 

measured whole blood reflectance spectra is expected in the NIR region (700-1000 nm), 

where lipid15 and water16 are observed at ca. 900 and 950 nm respectively. 
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1.1.2. Red Blood Cells 

Red blood cells (RBCs) are the most predominant cells in blood, being non-nucleated, 

deeply pigmented cells functioning in tissue respiration. They are highly specialised cells 

lacking the ability to synthesize new proteins and undergo mitosis, and are void of 

mitochondria and ribosomes. They contain haemoglobin, an iron-protein complex that 

functions as a carrier for oxygen and carbon dioxide17. RBCs take the form of biconcave 

disks, being 7-8 μm in diameter in humans. This shape is both beneficial for deformation, 

aiding movement through the microvasculature18, and in gas transfer, where the 

surface-to-volume ratio is maximised in such a shape19. 

 

1.1.3. White Blood Cells 

White blood cells (WBCs) or leukocytes, protect the host from external pathogens. They 

are a heterogenous group of nucleated cells which lack haemoglobin and function to 

defend the body from infection by producing antibodies, and/or injesting and destroying 

foreign bodies. WBCs are grouped into three main groups based on their appearance 

under a light microscope: lymphocytes, granulocytes, and monocytes. Each type have 

distinct physiological role and characteristic appearance17. Lymphocytes include B cells 

and T cells which recognise foreign pathogens and mediate their destruction via the 

production and secretion of antibodies. Granulocytes mediate body inflammation 

processes and can be further subdivided into neutrophils, eosinophils, and basophils. 

Monocytes differentiate at the site of infection into macrophages which are important 

antigen-presenting cells that engulf microbes via phagocytosis20.. 
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1.2. Haematology 

To understand the observed differences between the measured human and animal 

reflectance spectra the haematological parameters of each species are considered (see 

Appendix B).  

Haematology is the study and treatment of blood and blood-related diseases. In 

haematology, the three main values that define the erythroid system are: the 

haematocrit (HCT) or packed red cell volume (PCV), the haemoglobin concentration 

(Hb), and the RBC count per unit volume (RCC). Haemocytometers are used in the 

measurement of RCC, in addition to WBC and platelet counts. The haematocrit is defined 

as the proportion of the blood volume occupied by RBCs, and is expressed as millilitre 

RBC per decilitre whole blood (mL RBC/ dL blood). It reflects the concentration of RBCs 

in whole blood, but not the total red cell mass. The Hb is a measure of the quantity of 

haemoglobin per unit volume of blood, being the measurement of choice for the 

physiological assessment of the erythroid system status. This is due to Hb providing a 

direct measurement of blood-oxygen capacity. In the determination of Hb, all 

predominant forms of haemoglobin present in the blood such as oxyhaemoglobin, and 

carboxyhaemoglobin, amongst others, are converted to the haemoglobin-cyanide by 

the use of Drabkin’s solution21. This solution contains potassium ferricyanide (K3Fe[CN]6) 

and potassium cyanide (KCN) which quantitatively convert all forms (except 

sulfhaemoglobin) to the cyanide derivative. The haemoglobin-cyanide concentration is 

then measured using a spectrophotometer at 540 nm and comparing with known 

standards22. Hb is expressed commonly as grams per decilitre of whole blood (g/dL 

blood). As HCT and Hb are measured based on whole blood, these parameters are 

therefore dependent on the plasma volume. This means that these parameters are 

subject to an individual’s level of hydration, where levels are overestimated or 

underestimated in cases of extreme dehydration or overhydration respectively.  
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Figure 2. Typical blood composition in humans along with average haematocrit value (HCT; mL RBC/ dL blood) 

 

In addition to HCT, Hb, and RCC measurements, three indices describe the average RBC; 

the mean corpuscular volume (MCV), the mean corpuscular volume haemoglobin 

(MCH), and the mean corpuscular haemoglobin concentration (MCHC). The MCV is the 

average volume of RBCs calculated as the ratio of the haematocrit and the red cell count: 

 

𝑀𝐶𝑉 (10−15 𝐿)⁄ =  
𝐻𝐶𝑇 (𝐿 𝐿⁄ )  × 1000

𝑅𝑒𝑑 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 (× 1012 𝐿⁄ )
 

 

The MCH is average quantity of haemoglobin within a cell and is calculated as the ratio 

of haemoglobin concentration to red cell count: 

 

𝑀𝐶𝐻 (𝑝𝑔) =  
𝐻𝑏 (𝑔 𝑑𝐿⁄ )

𝑅𝑒𝑑 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 (× 1012 𝐿⁄ )
 

 

The ratio of haemoglobin to haematocrit measures the concentration of haemoglobin 

in the average RBC: 

𝑀𝐶𝐻𝐶 (𝑔 𝑑𝐿)⁄ =  
𝐻𝑏 (𝑔 𝑑𝐿⁄ )

𝐻𝐶𝑇 (𝐿 𝐿⁄ )
 

 

The MCH measures the weight of haemoglobin in the average RBC, while the MCHC 

indicates the haemoglobin concentration in the average RBC17. Within haematological 

examinations, the total number of leukocytes per unit volume (white cell count, WCC), 
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as well as a differential cell count that describes the proportion of each of the major cell 

types, is measured. Additionally, platelet and newly formed RBCs or reticulocyte counts 

are performed.  

 

1.2.1. Comparative Haematology of Common Domestic Animals 

The morphology of mature RBCs is similar in most mammalian species; they lack nuclei, 

are biconcave, disc-shaped cells. The major differences between animal RBCs are the 

size and the degree of central pallor (central zone with decreased haemoglobin due to 

closer apposition of membranes). As per Table 1 below, animal RBCs also vary in their 

degree of Rouleaux formation (aggregate stacks of RBCs), and anisocytosis (unequally 

sized RBCs). RBC size of laboratory animals – mice, rats, rabbits – is generally dependent 

on animal age, all of which have similar or slightly smaller size of RBCs compared to those 

found in dogs. The central pallor is also less pronounced compared to dog RBCs23.  

 

Table 1. RBC morphological parameters of humans and common domestic animals. Highlighted species are considered 
in this work. Note: while many animal RBCs are biconcave disks, llama RBCs are typically flat and oval-shaped.  

 Diameter [μm] Central pallor Rouleaux Anisocytosis 

Human 7.5 + - - 

Pig 6 + +++ + 

Mouse 5 - 7 + +- ++ 

Rat 5.7 - 7 + +- ++ 

Rabbit 6.8 + +- + 

Cow 5.5 +- - + 

Dog 7.0 ++ + - 

Cat 5.8 + ++ + 

Horse 5.7 +- +++ - 

Sheep 4.5 + - +- 

Goat 3.2 +- - + 

Llama 4.0 x 7.0 - - +- 
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Figure 3. RBC morphology and common abnormalities. Anisocytosis (irregular sized RBCs) and poikilocytosis (irregular 
shaped RBCs) are found commonly in various blood conditions in humans. The central pallor is the concave indentation 
at the centre of RBCs that is lighter in colour due to the cell’s relative thinness. Rouleaux (side-view) are aggregates of 
RBCs that form due to the large contact area facilitated by RBC shape. 

 

An additional factor to consider in the discrimination of human and animal blood 

samples based on their reflectance spectra is their respective morphological traits. Size 

and degree of cell irregularity influences the relative amount of haemoglobin present 

within the cell. If Rouleaux formations are common, it is hypothesised that the thickness 

of these aggregates could induce more light scattering. As a result, the measured 

reflectance spectrum of the blood stains is dependent not only on the relative number 

of RBCs, but the abundance of the molecule haem within a RBC, and the various 

morphological traits that attenuate its signal24. Similarly, coagulation of whole blood 

would generate aggregates that would cause more scattering. For this reason, the 

anticoagulant EDTA was used to mediate coagulation prior to measument. 

 

1.2.2. Anticoagulants in Haematology 

Anticoagulants are a group of chemical compounds that inhibit the coagulation cascade 

in blood and thus reduce or prevent clotting. They differ from antiplatelet drugs, which 

act directly on the aggregation of platelets25. The most common inhibitors of 

coagulation used in the analysis of blood are; ethylenediaminetetraacetic acid (EDTA) in 

either disodium or tripotassium salt forms, trisodium citrate, and heparin. In the case of 

the former two, their mechanism of action is the removal of calcium from the blood — 
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a clotting factor. Heparin forms a complex with plasma antithrombin III, inhibiting the 

formation of thrombin. EDTA contains four carboxylic acid groups and two amine groups 

which chelate calcium and other metal ions via their lone-pair electrons. The chelation 

of calcium inhibits the coagulation cascade and thus prevents the formation of blood 

clots; stabilising whole blood in its liquid form. EDTA is the preferred anticoagulant of 

blood cell counts as it has minimal effects on all blood cells with complete 

anticoagulation. Anticoagulated blood can be stored at 4oC for 24 hours without 

significant alterations to cellular morphology or cell counts25.  

 

1.3. Methods for the discrimination of blood 

Basic characteristics of blood found at a crime scene are determined using serological 

presumptive tests. The Kastle-Meyer (KM) test is a fast, cheap and efficient test used in 

the discrimination of blood from other substances of similar appearance. It is based on 

the decomposition of hydrogen peroxide into water and oxygen by the reaction with 

haemoglobin present in blood. This reaction, along with the indicator phenolphthalein, 

give a visible colour change of the medium-pink positive test result26. The main 

drawback to preliminary tests like the KM, and similarly the luminol test27, is the lack of 

a confirmatory result and their destructive nature28. The development of the Teichmann 

and Takayama crystal test29 as a confirmatory blood test, improves ambiguity during a 

forensic investigation. However, these tests are destructive and cannot differentiate 

blood of different species. Being based on the immune reaction and subsequent 

generation of antibodies when foreign blood is introduced into a host, precipitin tests 

are often used to differentiate human from animal blood. This occurs when human 

blood, or any protein of human origin in a specimen sample, reacts specifically with 

antibodies present in the anti-human serum. The formation of a cloudy band at the 

interfaces of the two liquids indicates blood of human origin1,30.  This test, however, has 

been mostly surpassed by immunoassay tests in blood identification31. Immunoassays 

are nonetheless prone to false-positives, where animal haemoglobin is very similar to 

human. Additionally, like many other presumptive and confirmatory tests, they are 

destructive and more often than not, require a laboratory environment to be 

performed. 
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Following the evaluation of presumptive tests, DNA analysis gives an accurate 

reconstruction of a person’s DNA profile with a high sensitivity. The results of the DNA 

analysis confirm the origin of the blood, be it from the victim or the perpetrator, or 

possibly both2. As the analysis of samples of ambiguous origins can cost significant time 

and money to an investigation, DNA analysis is performed only in cases where it is 

absolutely necessary. 

Advanced analytical methods have become increasingly predominant in forensic 

sciences. Mass spectrometry and chromatography techniques have become common 

place is toxicology labs, and spectroscopic methods such as Raman spectroscopy, UV-vis 

spectroscopy, and Fourier transform infrared spectroscopy (FT-IR) have proven 

themselves in the analysis of blood32–35. Their embrace has been partly due to the 

accompanying advancements in multivariate statistical analysis, leading to accurate, 

sensitive and reliable methods. These methods are often less destructive, or non-

destructive, with less sample preparation when compared to presumptive tests28.  

The most common chromophore in tissue is the iron-porphyrin complex haem36. This 

complex is found in oxygen carrying proteins such as haemoglobin and myoglobin, in 

addition to other haemoproteins such as haem peroxidase, catalases and cytochromes. 

In the blood, haemoglobin and its derivatives give its characteristic red pigment. When 

oxygenated haemoglobin (HbO2) is illuminated with white light, blue light is absorbed 

and red light is reflected, giving its characteristic colour. Deoxygenated haemoglobin 

(HHb) absorbs a higher degree of red light and thus is perceived bluer under white light. 

Therefore, reflectance spectroscopy can be used to provide information about 

haemoglobin oxygenation and by extension, concentrations37. The degree of light 

absorption of haemoglobin derivatives in tissue provides information about vascularity 

and metabolic status. Based on these principles, pulse oximetry is a simplistic version of 

reflectance spectroscopy. Reflectance spectroscopy has the benefits of being a non-

destructive method, with modern portable spectrometers enabling fast on-scene 

analysis. When coupled as an imaging system – as is the case with HSI – the information 

procured by reflectance spectroscopy can be mapped onto a crime scene, thus aiding 

interpretability of forensic findings. Nevertheless, reflectance spectroscopy is limited by 

long initial analysis times and the level of interpretation required to build models for use 
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outside of the lab. As outlined in Section 1.4, advanced statistical methods are required 

for the study of spectroscopic and hyperspectral data sets.  

 

1.3.1. Absorption of light by matter 

Electromagnetic radiation interacts with matter by three mechanisms; rotational, 

vibrational, and electron excitation. Rotational spectroscopy deals with the 

measurement of transition energies between quantized rotational states of molecules 

typically in gas phase. This is due to intermolecular forces between molecules in liquid 

or solid phase preventing free rotation. It is often termed pure rotational spectroscopy 

— to differentiate it from ro-vibrational or vibronic spectroscopy, where both rotational 

and vibrational electronic states change simultaneously. Vibrational spectroscopy is the 

study of characteristic vibrational modes of molecules, which encompasses infrared (IR) 

spectroscopy and Raman spectroscopy. Absorption occurs when the frequency of 

radiation matches the vibrational frequency of bonds of the molecule or group of atoms 

within a molecule. These modes must be IR-active to be observable, that is, have a 

change in the electric dipole moment38. The IR-inactive modes can be observed using 

Raman spectroscopy, which is based on the principle of Raman scattering — the inelastic 

scattering of photons39. Analogous to IR spectroscopy, a molecule must have a change 

in its polarizability to be Raman-active. 

Absorption of light in the UV, visible, and NIR ranges of the electromagnetic spectrum 

occur mainly by the radiation-induced transitions of single electrons from states of lower 

energy to ones of higher energy. Absorption occurs when the incident light frequency ν 

is equal to the energy difference between the ground and excited state: 

 

ℎ𝜈 = 𝐸1 − 𝐸0 = ℎ
𝑐0

𝜆
 

 

where h is Planck’s constant, c0 is the speed of light, λ is wavelength, E1 and E0 are the 

excited and ground states respectively. Pure electronic excitation theoretically gives 

sharp lines from the associated transition energy. However, electronic excitation is 
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always accompanied by molecular rotation and vibration, resulting in overlapping 

signals of different molecular vibration and rotation. 

 

𝐸 =  𝐸𝑒𝑒 + 𝐸𝑣𝑖𝑏 + 𝐸𝑟𝑜𝑡 

|𝐸𝑒𝑒| ≫  |𝐸𝑣𝑖𝑏|  ≫  |𝐸𝑟𝑜𝑡| 

 

This results in the characteristic broad bands, of most liquid and solid UV-vis spectra. In 

multicomponent analysis, convoluted spectra can be resolved using several methods 

including (but not limited to) optical methods, such as the use of monochromators and 

narrow-band lasers40, low-temperature spectroscopy41, and computational methods 

such as curve-fitting and derivative spectroscopy — the latter of which is discussed in a 

later section.  

Electrons of isolated atoms have discrete energy states, which in principle, can be 

calculated using the Schrödinger equation. In polyatomic molecules, the absorption of a 

photon is due to the excitation of a small group of atoms or specific types of electrons 

present. In the case of a carbonyl group (C=O), the absorption of 290 nm is normally 

observed. Groups with characteristic electronic transitions are termed chromophores 

(“colour-carrier” in Greek), and their presence in molecules and compounds often 

results in their observed colour42.   

Molecular orbital (MO) theory is used to describe the process of electronic transition 

where single bonds are described by σ orbitals and double bonds by π orbitals. The 

inclusion of asterisk (*) signifies antibonding nature of the respective orbital i.e., σ* and 

π*. Electrons of n orbitals do not participate in bonding and are termed nonbonding 

orbitals. Electrons of σ orbitals typically absorb light in the far UV (λ < 180 nm), with π 

and n transitions occurring with λ > 180 nm. Transition metals with incomplete d 

subshells form various complexes with ions and polar ligands and tend to have intense 

colour. The transitions between the orbitals of the central ion give rise to the weak and 

medium-intense bands in the visible range of the spectrum. Electronic transitions 

between the central ion and the ligands, π -> π* and n -> π* transitions within the ligands 

give rise to shorter-wavelength intense bands. These are termed charge-transfer 

transitions and inner-ligand transitions respectively43.  
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1.3.2. Reflectance Spectroscopy 

Reflectance spectroscopy is often used where the measurement of absorption via 

transmission-geometry is not possible due to sample thickness — as is the case in 

remote sensing applications44–46. The dynamic range of measurement is extremely large, 

ranging from UV to IR frequencies38. In the case of particulate matter, multiple scattering 

can amplify the contrast within weak absorption bands. A major diagnostic characteristic 

for determining a substance composition is the wavelength at which the reflectance 

band occurs, while the concentration or relative abundance can be retrieved from the 

intensity of spectral bands. However, in reflectance spectroscopy, both the band centre 

and band shape differ to that measured by transmission.  

 

 

Figure 4. Reflectance phenomenon. Reflection consists of two major components: Specular Reflection and Diffuse 
Reflection 

 

Reflection is when incident light that falls on a surface is thrown back without 

absorption. When the surface roughness is greater than the incident wavelength, light 

is scattered spherically outward in what is termed diffuse reflection. In the case of 

smooth surfaces such as liquids, glass or highly polished metals the light is reflected 

unidirectionally in the same plane and at the same angle as the incident beam. This 

phenomenon is termed specular reflection or regular reflection43.  

 

Reflected radiation of diffusing media consists of two components. The first is the 

regular reflection at the surface where the Fresnel equations can be applied. The regular 

reflectivity of perpendicular incidence is given by: 
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𝑟 =
[(𝑛 − 1)2 + 𝜅0

2]

[(𝑛 + 1)2 + 𝜅0
2]

 

 

where n is the relative refractive index of the medium and κ0 is the absorption index 

defined by the Lambert law: 

 

𝐼 =  𝐼0 exp [−
4𝜋𝜅0𝑑

𝜆
] = 𝐼0 exp[−𝛼𝑑] 

 

With the distance d, being the distance travelled within the absorbing medium, where 

the radiation is reduced from I0 to I, and 𝛼 =
4𝜋𝜅0

𝜆
 is the characteristic absorption 

coefficient of the substance. 

The second component of reflected radiation is due to the multiple scattering of surface-

penetrating radiation with individual media particles. A portion of this scattered 

radiation emerges back at the surface as diffuse reflection, while another portion 

interacts with particles giving absorption information. The radiation attenuation with 

distance follows the relation outlined above, however α is now interpreted as the mean 

absorption coefficient of the sample, with the distance d being the mean penetrated 

layer thickness. 

Both regular and diffuse reflectance are used to determine absorption properties of a 

medium. However, the proportion of both parts reflected is dependent on both the 

instrument and the absorptive properties of the medium. In the equation of regular 

reflectance, it is noted that the regular reflectivity increases with increasing absorption 

index, κ0. Meanwhile, the diffuse reflectance is exponentially attenuated after a certain 

extent in which the diffuse component decreases with increasing absorption47.  

 

1.3.3. Hyperspectral Imaging  

Hyperspectral imaging (HSI) combines conventional imaging with spectroscopy, giving 

two-dimensions of spatial (x,y) and one of spectral information (λ). HSI was first 

developed for remote sensing45,48, having greater resolution than traditional broadband 

Landsat scanners. The power of HSI lies in the ability to obtain a continuous spectrum 
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for each pixel, as opposed to multispectral imaging which measures discrete spectral 

bands49. In addition to its original application in satellite and airborne land observation 

systems, HSI has found recent applications in agriculture56,51, archaeology and art 

conservation51,52, medicine53,54, and forensic science11,55.  

In general, HSI systems feature a light source, and wavelength dispersion devices which 

are coupled to area detectors. Common light sources include tungsten halogen lamps. 

They are suitable for their stable spectrum in the visible and infrared ranges being the 

most common illumination source in hyperspectral reflectance imaging56. Broadband 

light emitting diodes (LEDs) are an up-and-coming alternative to halogen light sources. 

However, despite their long life, low power consumption, and small size, they provide 

only narrow bands of light. Additionally, NIR LEDs are more expensive than their 

tungsten alternative57. Lasers, being inherently monochromatic, are most commonly 

used in excitation-based methods such as fluorescence and Raman spectroscopy56,57.  

Due to the diversity in imaging-system spectral-ranges, resolution, types of dispersion-

devices and detector-arrays, there are many possibilities of classifying HSI systems. The 

classification of HSI systems is generally divided in terms of acquisition of spectral and 

spatial information. There are two conventional methods, spatial and spectral scanning, 

with “snapshot” methods being mainly reserved for multispectral imaging. For spatial 

scanning hypercube acquisition, a complete spectrum is obtained per pixel by either a 

point-scanning (whiskbroom) or line-scanning (pushbroom) instrument. Spectral 

scanning methods are also often termed “staring”, as they capture the whole 2D image 

scene in a single exposure and subsequently stepping through the wavelength range54. 

The main trade-off between acquisition techniques is the acquisition speed, resolution, 

and/or signal-to-noise ratio.  

While HSI systems can work in a variety of wavelengths from UV, visible and IR ranges, 

the majority of systems operate in reflectance mode over fluorescence and transmission 

modes. This bias is partly due to the presumption that sample size is too thick and thus 

incapable of transmission measurement54,58.  
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1.4. Complementary Statistical and Analytical Methods 

1.4.1. Chemometrics 

The use of computers in chemistry dates back to the 1970s, when analytical groups used 

statistical and mathematical methods using mainframe computers. Svante Wold and 

Bruce R. Kowalski first described chemometrics in 1972, with the first description of the 

discipline coinciding with the foundation of the International Chemometrics Society, two 

years later59. The definition is as follows: “Chemometrics is the use of mathematical and 

statistical methods in chemistry to (1) design optimal measurement procedures and 

experiments, and (2) to provide maximum chemical information by the analysis of 

chemical data”. Today, the analytical chemist uses various software related to 

processing of data and/or applying mathematical methods. Besides statistical-

mathematical methods, chemometrics encompasses methods of handling spectroscopic 

or chemical databases and artificial intelligence59. HSI data is inherently multivariate in 

nature and thus multivariate tools are needed to appropriately extract information from 

the large number of data variables in the xyλ-space. 

 

1.4.2. Pre-processing 

Physical properties of the sample, such as the degree of light scattering, as well as the 

influence of instrumental noise, can lead to spectral variation between samples and 

measurements. These variances that are not caused by the sample properties directly, 

need to be reduced and/or eliminated by pre-processing methods. Typical pre-

processing in HSI multivariate analysis includes; smoothing, normalisation, derivatives, 

multiplicative scatter correction (MSC), and standard normal variate (SNV). The latter 

two are implemented to remove non-uniform scattering interferences contributing to 

the observed spectrum, while smoothing reduces spectral noise, and derivatives can 

separate overlapping peaks, sharpening spectral features56. The selection of pre-

treatment method or combination of methods is often performed via an iterative 

process where the best method fulfils criteria of later data treatment methods (e.g., if 

standardisation or normalisation of data is required) and one that produces the most 

robust model. 
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1.4.3. Classification 

Multivariate data analysis and statistics in chemistry are used for one of two objectives: 

Firstly, the modelling of relationships between sets of analytical measurements and 

properties is the case of calibration. In typical calibration a parameter is estimated from 

the representative calibration coefficients. The second is the grouping and /or classifying 

of objects, chemicals, or compounds by means of analytical data on the basis of a 

property or known class membership. 

 

1.4.4. Unsupervised Learning 

Unsupervised classification is the grouping of objects without known membership to the 

particular classes. This grouping of data is performed by either the projection of high-

dimensional data onto lower dimensional space or via clustering methods. Clustering 

aims to divide data points into groups with similar traits and assign these groups into 

clusters using a given “similarity” measure. Clustering methods can be subdivided into 

two groups; hard-clustering or soft-clustering. The data point in question can either be 

assigned to a cluster or not, as is the case in hard-clustering. For soft-clustering, the data 

point can be given a probability to which cluster it is assigned to. The most popular 

clustering algorithms are k-means clustering and hierarchical clustering. K-means 

clustering is an iteratively finds the local maxima of clustering centroids until no further 

improvement is achieved. Hierarchical clustering on the other hand, assigns all data to 

an individual cluster before merging the nearest clusters to each other in a hierarchical 

fashion.   

The former data grouping method, data projection, is often referred to as factorial 

methods and can be implemented into the multivariate workflow as feature 

transformation. High dimension data is projected onto a line, plane, or three-

dimensional coordinate system which reduces the dimensionality and can reveal 

grouping when the optimal projection is found. The main methods of dimension 

reduction applied in chemometrics are that of principle component analysis (PCA), 

factor analysis (FA) and singular value decomposition (SVD)60. In the following sections, 
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PCA and neighbourhood component feature selection (NCFS) are described in further 

detail. 

 

1.4.4.1. Principal Component Analysis (PCA) 

Given the original multidimensional data matrix X, which consists of n rows or objects, 

and p columns or features, X can be projected down a d-dimensional subspace to give 

the object coordinates in the plane T via the projection matrix LT. T has n rows and d 

columns (number of principal components) and is called the scores matrix, while L has 

d columns and p rows and is the loading matrix. The p rows of loading matrix are called 

loading vectors — while the d columns of the scores matrix are called the score vectors 

— with both vectors being orthogonal ti
Ttj = 0 and pi

Tpj = 0 for i ≠ j. This reconstruction 

of the input data results in new, uncorrelated variables. PCs are determined based on 

the criterion of maximum variance, and thus most of the data variance is described by 

the first PC, next the second PC and so on and so forth. As a large proportion of the 

variance is described by only a few PCs, the data is often visualised by plotting PC scores 

against one another. The decision of the number of PCs to use is often determined by 

the percentage explained cumulative variance e.g., 90 %60.  

 

1.4.4.2. Neighbourhood Component feature selection (NCFS) 

Neighbourhood component feature selection (NCFS) is a neighbour-based feature 

weighting algorithm proposed by Yang et al. (2012)61. It is a non-parametric method 

without assumptions about the data distribution, which learns the feature weights by 

maximising the expected classification leave-one-out accuracy with a regularisation 

term. The following is an adaptation from the original 2012 paper, as described by 

MathWorks: 

Consider a classification problem with training set T = {(xi, yi), i = 1, 2, …, n}, where xi is a 

d-dimensional feature vector, yi ∈ {1, …, C} is the corresponding class labels, and n 

number of samples. The aim is to determine a weighting vector w that selects the 
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feature subset optimizing classification. The weighted distance between two samples xi 

and xj in terms of the vector w is: 

𝑑𝑤(𝑥𝑖 , 𝑥𝑗) =  ∑ 𝑤𝑟
2|𝑥𝑖𝑟 − 𝑥𝑗𝑟|

𝑝

𝑟=1

 

where wr is an associated weight of the r-th feature. Consider a classifier that randomly 

picks a reference point Ref(x) from T, and labels x using the label of reference point 

Ref(x). The probability P(Ref(x) = xj|T) that point xj is picked as reference point for x is 

higher the closer xj is to x as measured by dw. Assuming P(Ref(x) = xj|T) ∝ k(dw(xi, xj) 

where k(z) = exp(-z/σ) is a kernel function with kernel width σ, the sum of P(Ref(x) = xj|T) 

for all j must equal 1. Hence, it can be written: 

𝑃(𝑅𝑒𝑓(𝑥) =  𝑥𝑗|𝑇) =  
𝑘(𝑑𝑤(𝑥, 𝑥𝑗))

∑ 𝑘(𝑑𝑤(𝑥, 𝑥𝑗))𝑛
𝑗=1

 

The probability that point xj is picked as reference point for xi in a leave-one-out 

randomised classifier is: 

𝑝𝑖𝑗 = 𝑃(𝑅𝑒𝑓(𝑥𝑖) =  𝑥𝑗|𝑇−𝑖) =  
𝑘(𝑑𝑤(𝑥𝑖, 𝑥𝑗))

∑ 𝑘(𝑑𝑤(𝑥𝑖, 𝑥𝑗))𝑛
𝑗=1,𝑗≠𝑖

 

where the label of xi is predicted using T-i, the training set without point (xi, yi). 

The average leave-one-out probability of correct classification is therefore, 

𝑝𝑖 =  ∑ 𝑃(𝑅𝑒𝑓(𝑥𝑖) =  𝑥𝑗|𝑇−𝑖𝐼(𝑦𝑖 = 𝑦𝑗) =  ∑ 𝑝𝑖𝑗𝑦𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑗=1,𝑗≠𝑖

 

Where 𝑦𝑖𝑗 = 𝐼(𝑦𝑖 = 𝑦𝑗) = {
1 𝑖𝑓 𝑦𝑖 = 𝑦𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. The average leave-one-out probability of 

correct classification with regularized objective function can be written as: 

𝐹(𝑤) =  
1

𝑛
∑ 𝑝𝑖 −

𝑛

𝑖=1

𝜆 ∑ 𝑤𝑟
2

𝑝

𝑟=1

 

                                  =  
1

𝑛
∑ [ ∑ 𝑝𝑖𝑗𝑦𝑖𝑗 − 𝜆 ∑ 𝑤𝑟

2

𝑝

𝑟=1

𝑛

𝑗=1,𝑗≠𝑖

]

𝑛

𝑖=1
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=  
1

𝑛
∑ 𝐹𝑖(𝑤)

𝑛

𝑖=1

 

 

which depends on the weight vector w and regularization parameter λ. The aim of NCFS 

is therefore to maximise F(w) with respect to w. As λ drives weights in w to 0, this 

parameter needs to be tuned for example, using cross-validation. 

 

1.4.5. Supervised Learning 

Supervised learning is a group of pattern recognition methods where object class 

membership is known prior to training. Common methods include linear learning 

machines, discriminant analysis, k-nearest neighbour (k-NN), and support vector 

machines (SVM). Multivariate modelling methods can also be the basis for supervised 

methods, e.g., partial-least squares (PLS) in the form of discriminant analysis (PLS-DA). 

Decision trees, SVMs and k-NN are briefly described below, with the theory further 

detailed in Appendix C.  

 

1.4.5.1. Decision Trees 

Decision trees attempt to predict a response to a dataset by following decisions from 

the beginning (root) down to an end (leaf) which contains the response. Decision trees 

are easy to interpret due to the sequential binary partitions along the data coordinates. 

The theory of decision trees is further detailed in Appendix C.  

 

1.4.5.2. Support Vector Machines (SVM) 

The separation of overlapping classes based on optimal separating hyperplanes (such as 

discriminant analysis) is not feasible. In classification, SVMs give linear boundaries 

between groups in a (usually) higher dimensional transformed x-variable space. In the 

transformed feature space, a maximum margin classifier is implemented with the back-

transformed boundaries being non-linear. SVMs can be used for both regression and 
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classification problems62, and have increased in prominence in biology and 

chemistry63,64,65. Further information on SVMs is detailed in Appendix C. 

 

1.4.5.3. k-Nearest Neighbours (k-NN) 

A simple way of classifying new data points is by using pairwise distance metrics to 

determine the distance between objects and assigning the new data point to the 

corresponding class of minimum distance. k-NN is often implemented as a reference 

method as it is conceptually simple, for its applicability to multiclass problems, and the 

fact that it does not require compact group clusters or linearly separable data. k-NN is 

further described in Appendix C. 

 

1.4.6. Bayesian Optimisation 

In machine learning, model learning parameters and hyperparameters need to be tuned 

in order to obtain the optimal model that describes the data. Bayesian optimisation is 

an automized approach to hyperparameter tuning, in which the performance of a 

learning algorithm’s generalization is modelled from a Gaussian process66,67. A global 

statistical model of the unknown objective function is iteratively developed using a 

posterior distribution treated as observations in a Bayesian nonlinear regression68.  

Bayesian optimisation constructs a probabilistic model for the function f(x) of a bounded 

set X which it uses to determine where next to evaluate f(x) in X. As all the information 

from previous evaluations of f(x) are considered in subsequent evaluations, this requires 

more computation, with the benefit of requiring fewer evaluations, to obtain function 

minimization. This trade-off is acceptable in machine learning where training and 

evaluation is computationally expensive. Bayesian acquisition functions are described in 

Appendix C. 
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2.  Materials and methods 

2.1. HSI system 

The commercial Specim IQ® (Specim, Spectral Imaging Ltd., Oulu, Finland) was used for 

the capturing of hyperspectral images. This system features a push-broom scanner 

producing hypercubes in the range of 400 – 1000 nm with a spectral resolution of 7 nm 

(204 spectral bands, λ-axis). The number of effective pixels is 512 x 512 pix (x-, y-axis) 

and the camera fore optic provides a field of view of 31 x 31 degrees. Therefore, at a 

distance of 30 cm between the camera and sample, a viewable area of 16.4 x 16.4 cm 

results in a spatial resolution of 0.32 mm. Illumination was achieved using two tungsten 

halogen broadband light sources (750 W each). The default recording mode (DRM) with 

simultaneous white reference method, in which the white reference panel is measured 

alongside the target sample, was used for data acquisition. An integration time of 10 ms 

was used giving a recording time of 35 ms per hypercube. This was verified using the 

built-in ‘quick data validation’, where the highest spectrum value of each pixel is 

visualised as a histogram with an indication of under-saturation (pixel intensity < 30 %) 

or over-saturation (maximum pixel intensity). The reflectance transformation is 

calculated from 3 measured datacubes: The raw datacube of light intensities measured, 

the dark frame — which is the sensor baseline signal due to the camera electronics, and 

the white reference. The white reference is assumed to contain only the signal from the 

illumination given the same measurement geometry, distance and illumination as the 

sample measured. The reflectance datacube is calculated using the relation: 

𝑅𝑖𝑗(𝜆) =
𝑅𝐴𝑊𝑖𝑗 − 𝐷𝑎𝑟𝑘𝑖𝑗

𝑊ℎ𝑖𝑡𝑒𝑖𝑗

   

where R is the reflectance, RAW is the raw datacube, Dark is the instrument dark frame, 

White is the white reference plate intensity, and i and j are horizontal and vertical pixel 

indices. To reduce the interference, all external light sources — including room lights — 

were switched-off during image recording. To avoid heat damage of the samples the 

halogen lights were switched-off in between measurements.  
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2.2. Human and animal dataset 

Venous blood from 20 healthy human volunteers (10 male, 10 female, age 42 ±16 years) 

was obtained from the Institut für Transfusionmedizin, Universitätsklinikum Leipzig. The 

1.7 mL blood aliquots were collected into EDTA and refrigerated to avoid coagulation 

prior to measurement. The samples were transported to the Institut für Rechtsmedizin, 

Universitätsklinikum Leipzig where the blood was then deposited onto white cotton 

fabric creating a spot of ca. 5 cm2 which was let dry at room temperature for 10 minutes. 

Samples that were stored under refrigeration were allowed to warm to room 

temperature prior to probe preparation in order to remove temperature dependence, 

if any, between samples. The hyperspectral image was recorded using the SPECIM IQ® 

camera under halogen light. The samples were left exposed under ambient conditions 

and recorded once daily for a week, and then intermittently up to 32 days.  

Blood from 20 pigs was obtained from Schlachthof Weiβenfels, Weiβenfels and 

transported to the Institut für Rechtsmedizin, Universitätsklinikum Leipzig in EDTA 1.7 

mL aliquots. The blood was deposited onto white cotton and let dry for 10 minutes. 

Varying degrees of coagulation were noticed in 11 of the aliquots which did not 

resuspend upon inversion. For these samples, the jelly-like mass was not deposited onto 

the cotton and the stains appeared lighter. As above, the HSI images were measured 

daily up to a week and then intermittently up to 42 days. 

Venous blood from 20 cows was obtained from the Klinik für Klauentiere, 

Veterinärmedizinische Fakultät, Universität Leipzig. The 1.7 mL EDTA aliquots were 

transported to the Institut für Rechtsmedizin, Universitätsklinikum Leipzig, spotted onto 

white cotton and let dry as previously mentioned. RBCs could be resuspended by gentle 

inversion and no major coagulation was observed. HSI images were measured daily for 

1 week and then intermittently up to 42 days.  

Cardiac blood from 16 mice (5 female CD1/CR, 5 male CD1, 6 female Sv129), was 

obtained from the Medizinisch-Experimentelles Zentrum III, Universitätsklinikum 

Leipzig. The <1 mL samples were transported to the Institut für Rechtsmedizin, 

Universitätsklinikum Leipzig, and spotted on to white cotton giving ca. 3 cm2 spots. HSI 

images were measured daily for the first week and then intermittently up to 24 days. 
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Venous blood from 5 rats (3 female, 2 male SPRD) and 5 rabbits (1 female, 1 male White 

New Zealand; 1 male, 2 female Chinchilla bastard) was obtained from Medizinisch-

Experimentelles Zentrum I, Universitätsklinikum Leipzig. The 1.7 mL EDTA aliquots were 

transported to the Institut für Rechtsmedizin, Universitätsklinikum Leipzig and ca. 5 cm2 

spots were made on white cotton. HSI images were measured daily for 1 week and then 

intermittently up to 49 days. 

The unbalanced data (Table 3) obtained from the ROIs of the corresponding HSI images 

was divided into bins that follow the natural exponential series f(x) = ex where x = 0, 1, 

2, 3 and f(x) = 1, 2.718, 7.389, 20.086. This gives the time interval bins: 0.0-1.0, 1.0-3.0, 

3.0-7.0, 7.0-20.0, and 20.0-55.0. This was in order to capture the exponential-like 

decrease in haemoglobin derivatives HbO2, and increase in metHb and HC with respect 

to degradation over time11.  

 

Table 2. Human and animal dataset. 

 Number Total 

(Male/Female) 

Age Mean ±Stdev Age Range 

Human 20 (10/10) 42 ±16 years 20 – 68 years 

Pig 20 (-/-) 6 months* - 

Mouse 16 (5/11) 108 days 59 – 204 days 

Rat 5 (3/2) 87 days 42 - 162 days 

Rabbit 5 (2/3) 1.7 ±0.9 years 0.9 – 3.2 years 

Cow 20 (-/-) - - 
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Table 3. Total dataset number of recorded HSI images and spectra. 

 Sample 

No. 

Age [Days] HSI Images No. ROIs Tot. Spectra 

Human 20 0.1 – 32 21 103 231,075 

Animal 66 0.1 – 49 59 250 454,450 

Pig 20 0.1 – 42 8 83 180,000 

Mouse 16 0.1 – 24 18 64 45,075 

Rat 5 0.1 – 49 12 18 35,750 

Rabbit 5 0.1 – 49 12 18 50,625 

Cow 20 0.1 – 42 9 67 145,000 

 

 

Figure 5. Comparative bar plot of unbalanced data with respect to species and binning. 

 

2.3. Classification framework 

The aim of the classification was the automatic identification and segmentation of blood 

with respect to human and animal blood using HSI. HSI data cubes were annotated using 

GIMP (The GIMP Development Team, 2019) to create regions of interest (ROI) of the 

blood samples consisting of approximately 25 x 25 pixels (625 spectra). Microsoft Excel 

(Microsoft Corporation 2019) was used for the documentation and analysis of results. 

Data balancing and data pre-processing were performed using custom scripts written in 
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MATLAB (version 9.8; R2020a, The MathWorks Inc.), with machine learning algorithm 

selection and optimisation being performed using the Statistics and Machine Learning 

Toolbox™, and Imaging Processing Toolbox™, both being provided by MATLAB. The data 

treatment is detailed in the following sections. 

 

 

Figure 6. Classification framework for HSI data cubes of human and animal bloodstains. 

 

2.3.1. Pre-processing 

The spectral window of 400 – 1000 nm (204 spectral bands) was initially truncated to 

435 – 965 nm (178 spectral bands) due to the low camera sensitivity and low power of 

the halogen light source beyond this range12. A Savitzky-Golay filter69 with polynomial 

order of 2 and window length of 9 spectral bands was implemented to smooth the 

reflectance spectra giving an effective wavelength range of 445 – 955 nm (169 spectral 

bands). This filter uses linear least squares to fit a polynomial to successive windows of 

adjacent data points. Spectra were then normalised using the SNV transform70, which 

auto-scales the data giving a mean reflectance of zero and standard deviation of one. 

The SNV reflectance spectra were then used in the training of classification models, 

including feature selection, which is further detailed later sections. 

Second-order derivative spectra were generated from the human and animal spectra 

using an additional Savitzky-Golay filter, in order to resolve undefined broad peaks and 

examine differences between datasets. Additionally, PCA was performed using the SNV 

spectra, and visualised via scores and loading plots of the first 3 principal components. 

Both the second-order derivatives and PC plots were used to investigate and rationalise 

the observed differences between human and animal reflectance spectra. 
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2.3.2. Background detection 

Prior to image classification a decision tree algorithm for background detection was 

implemented. The Algorithm Background Detection71 (ABG) was modified to exclude all 

background except for the blood stains: 

 

Figure 7. Algorithm to detect background prior to classification. 

 

The algorithm parameters A, B, and C, attempt to exclude spectra that have features 

that are not characteristic to blood and blood stains. Parameter A removes constant 

high-valued reflectance spectra, such as the white cloth deposition surface. Parameter 

B is based on the Q-bands of haem, which are predominant low-reflectance in spectra 

of blood. Parameter C attempts to capture the proportionality between the low-

reflectance region of the haem Q-bands, and the high-reflectance far-red region of a 

typical blood reflectance spectrum. The parameter threshold values A < 0.6, B > 0.05, 

and C > 1.7, were empirically determined as the optimum values for background 

detection. 

The image morphological noise removal technique “closing” was performed on the ABD 

binary gradient mask by dilation using a vertical structuring element followed by a 

horizontal structuring element and subsequent erosion using a diamond structuring 

element.  
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2.3.3. Class Balancing 

The species classes include different numbers of individuals and recorded HSI images 

which in turn lead to drastically different numbers of spectra per class (Table 3). To build 

an unbiased classification model, the data needs to be distributed evenly with respect 

to classes. This process of ‘balancing’ the data usually follows one of two forms of 

resampling: Oversampling is the addition of copies of data from the minority class(es) to 

artificially increase the class size to equal that of the majority class. This method is 

preferred for instances of little data, but can produce overfitted models due to the 

duplicated observations. Undersampling is the removal of observations from the 

majority class to decrease its size to be comparable to that of the minority class. 

Undersampling is generally suited for large data sets, as this method removes 

information that could lead to an underfitted model or a model that generalizes poorly. 

For this reason, undersampling was chosen as the resampling method for the balancing 

of the bloodstain data. This was achieved by randomly excluding spectra of a given class, 

so that it correlates with the number of spectra of the minority class. 

In addition, to build a classification model that is independent of sample age, the data 

must be logically distributed to equally represent changes in the blood spectra with 

time. As the effect of time on blood composition is the most explored method in age 

determination of blood stains11,28,72, the effect of time on the absorption ratio of blood 

components is well documented. To capture the exponential-like decrease in HbO2 and 

the contrary increase in metHb and HC with time, blood samples were binned into 

groups of 0.1 - 1 days, 1 - 3 days, 3 - 7 days, 7 - 20 days and 20 - 49 days. Within each 

species class, the age-group bins were first balanced using undersampling to that of the 

least represented bin. The animal classes were then balanced to each other, so each 

animal was equally represented, before balancing to the human class by the random 

exclusion of animal observations, maintaining age group distribution. Human 

observations were assigned the binary response of 1 while all animal observations were 

assigned the binary response of 0 thus forming the two classes.  
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Table 4. Number of species spectrum before and after underbalancing was implemented. The class were balanced 
initially by age bins, followed by balancing by species. 

 No. Spectra Balanced 

Human 20 121 535 100 135 

Animal 66 187 750 100 135 

Pig 20 59 950 20 027 

Mouse 16 25 425 20 027 

Rat 5 31 050 20 027 

Rabbit 5 25 325 20 027 

Cow 20 46 000 20 027 

 

2.3.4. Feature Selection 

Neighbourhood component feature selection (NCFS)61 was implemented to reduce data 

dimensionality and identify regions of interest in the blood spectra that contribute to 

the successful discrimination of human and animal blood. The stochastic gradient 

descent (SGD) solver algorithm, with solver-batch size of 1,000 observations, was used 

to estimate feature weights. The initial learning rates were tuned with a subset size of 

10,000 observations. The best value for the regularization parameter λ that minimizes 

the generalisation error is expected to be a multiple of the inverse of the number of 

observations n. 10-fold cross-validation was thus used to tune λ for feature selection to 

find the average minimum loss value of the folds. Given the large number of 

observations in the training set (144,020 spectra), the expected value is λ = 6.943 x10-6 

and therefore can be approximated as zero. Without a regularisation parameter, all 

features have a weight greater than 0, and therefore a feature weight threshold was 

implemented. Thresholds of 0.5, 0.55, 0.6, 0.65, 0.70, and 0.75 times the maximum 

feature weight were used to select 92, 68, 43, 34, 26, and 16 of the most important 

wavelengths as determined by the NCFS algorithm. These features were then used to 

train simple k-NN classifiers (k = 1) of the training set, which were evaluated based on 

their F1 score. The F1 score is the quotient of 2 times the product of the recall and 

precision divided by the sum of recall and precision and arguably captures the model’s 

performance better than the accuracy, recall and precision values individually. 
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2.3.5. Classification 

The data was split into training and test sets as per Table 5 with approximately 20-25% 

of individuals removed from each species class to build the test set. This was further 

randomly divided into 66% validation and 34% test set to be used in the validation of 

optimised models and the final chosen model respectively. 

  

Table 5. Training set and test set partition with balancing. 

 No. Training Set Spectra Test Set Spectra 

Human 20 15 72010 5 28125 

Animal 66 53 72010 13 28125 

Pig 20 16 14402 4 5625 

Mouse 16 13 14402 3 5625 

Rat 5 4 14402 1 5625 

Rabbit 5 4 14402 1 5625 

Cow 20 16 14402 4 5625 

 

Five binary classification algorithms were initially tested using 10-fold cross-validation: 

SVM with polynomial and gaussian kernels, decision tree, bagged tree, and k-NN. The 

models were assessed based on their F1 scores and AUC curves, and the SVM with 

polynomial kernel, bagged tree, and k-NN were selected for further optimisation. 

Bayesian optimisation was implemented, which attempts to minimise an objective 

function f(x) for x by using an acquisition function a(x) to determine the next 

hyperparameter point for evaluation. The acquisition function “expected-improvement-

per-second-plus” was used to evaluate the goodness of fit66,68.  

30 iterations were used to evaluate the models with Bayesian optimisation. For the SVM 

the kernel scale and box constraint hyperparameters were simultaneously optimised. 

The distance metric and number of neighbours were optimised for the k-NN model, 

while the bagged decision tree was optimised based on number of learning cycles and 

number of leaves within the tree. The optimised models were then tested using the 

validation data and the F1 scores compared. The polynomial-SVM was selected and the 
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degree of overfitting estimated using the training error, 10-fold cross-validation error, 

and validation error of the 9 ‘best’ iterations as determined by the Bayesian optimisation 

algorithm. The optimal SVM model was selected based on the mean-plus-1 standard 

error of the smallest mean CV error.   
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3. Results 

3.1. Training and Test Set spectra 

In the age estimation of bloodstains using spectroscopic methods, the change in blood 

composition is the most studied method28. The HbO2 in blood is degraded to metHb and 

finally HC and the ratio in the values of Q-bands of the haemoglobin derivatives follows 

an exponential-like decrease11 with respect to time. Thus, haemoglobin is at its highest 

concentration within the “fresh” blood samples and by extension the associated 

spectrum undergoes the greatest change in the first hours of exposure to the 

environment. This is evident in the measured HSI images (see Figure 22-27) where the 

drastic change in colour from bright red (almost all haemoglobin is HbO2) to brown 

(mostly metHb and HC) can be seen. 

 

 

Figure 8. Figure 8. Reflectance spectra of the training dataset of a) animal and b) human blood on cotton of all ages 
(day 0.1 – 40) with Savitzky-Golay smoothing and SNV transformed spectra of c) animal and d) human blood. 



41 
 

Figure 8a and Figure 8b shows the reflectance spectra of animal and human blood on 

white cotton. The animal blood spectra contain blood spectra from pig, mouse, rat, 

rabbit and cow of age 0.1 days to 49 days old. The human spectrum contains spectra of 

training set individuals aged over a period of 32 days. The SNV transformed spectra of 

animal and human blood is presented in Figure 8c and Figure 8d respectively. The SNV 

transformation is similar to multiplicative scattering correction (MSC) in that the 

multiplicative interferences of light and particle scattering are corrected. After SVN 

transformation, two distinct groups of spectra are visible in the animal spectra and two 

groups in the human spectra. These correspond to “fresh” and “old” blood stains as the 

blood spectrum changes in composition of HbO2, MetHb and HC with respect to time.  

 

3.2. Feature Selection using NCFS algorithm 

 

Figure 9. Average 10-fold loss vs. incremental lambda values of NCFS models. 

 

Figure 9 above shows the average loss of 10-fold cross-validation of NCFS models using 

the training dataset. The general trend of increasing loss value with increasing lambda 

value is observed. The λ-value with the minimum loss value is very close to 0 which 
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correlates to the expected ideal value of λ = 6.943 x10-6 for n = 144,020 observations. 

The regularisation parameter was therefore set as zero before refitting the NCFS model 

to the training dataset. The lack of a value for the regularisation parameter results in no 

forcing of features weights to zero, and therefore by definition, all features weights are 

considered of some degree of importance (feature weight > 0). This has the additional 

effect of illustrating the correlation between wavelengths in a given spectra as shown in 

below. 

To identify the regions of greatest interest as determined by the NCFS algorithm in the 

typical blood spectrum, the average SNV reflectance human blood spectrum was plotted 

as a secondary axis (black) to the feature weights (red). Threshold values of 50% to 80% 

in increments of 5% of the feature of maximum weight (feature 80, weight = 26.12) were 

used to select the most important wavelengths for use in further classification. Six k-NN 

models where k = 1 were trained using the threshold values including and the model 

statistics compared to a k-NN classification model without feature selection (threshold 

= 0, 170 wavelengths). 

 

Figure 10. NCFS feature weights as a function of feature index (red circles) with threshold lines of 50% and 80% the 
maximum feature index weight. The average human blood spectrum is plotted as a secondary axis (black; x-axis 
wavelength [nm], y-axis SNV reflectance [a.u.]) to guide the eye. 
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Figure 11. Confusion charts of trained k-NN (k=1) classifiers with threshold values T = 0 (full spectrum), T = 0.5 (92 
wavelengths), T = 0.55 (68 wavelengths), T = 0.6 (43 wavelengths), T = 0.65 (34 wavelengths), T = 0.7 (26 wavelengths).  

 

The confusion charts for the k-NN (k = 1) models above illustrate effect of information 

loss with fewer features resulting in more misclassifications generally. This is reflected 

in the F1 scores presented in Table 6 below. Comparing to model 1 without feature 

selection, there is a 2.8% decrease in F1 score with model 3 which has a feature weight 

threshold of 0.55. Model 4 has a relative decrease of 2.3% compared to model 3. In 

addition, model 3 reduces the data dimensionality by 60% from 170 features to 68 

features, which is 15% greater than model 2 of 92 features. Therefore, the optimal 

threshold value of 0.55 with 68 features (wavelengths) was selected for use in further 

classification model development, as this is the best trade-off between data reduction 

and information retention. 
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Table 6. NCFS k = 1, k-NN model F1 scores to determine the optimal number of features based on the prediction of 
the validation set. Model no. 3 with threshold of 0.55 and 68 wavelengths was chosen as optimal number of 
features. 

Model No. Threshold No. Features F1 score 

1 0 170 0.9255 

2 0.50 92 0.9125 

3 0.55 68 0.8971 

4 0.60 43 0.8740 

5 0.65 34 0.8487 

6 0.70 26 0.8463 

 

3.3. Classification development using Bayesian Optimisation 

Bayesian optimisation was used to optimise hyperparameters of k-NN, bagged tree, and 

SVM models with 10-fold cross-validation. The acquisition function “expected-

improvement-per-second-plus” was used to evaluate the next hyperparameter point for 

evaluation. The k-NN model was optimised in terms of distance metric and the number 

of neighbours ranging from 2-10. This range of neighbours was chosen as k-NN models 

with k = 1 tend to overfit, and models with large values of k are prone to underfitting. 

Figure 12 below of the Bayesian optimisation objective function model for 30 iterations 

of k-NN models shows the large differences in the estimated objective function value 

with respect to distance metric. This is in contrast to the number of neighbours which 

shows minimal variation within each distance metric. The Spearman, Mahalanobis, 

Jaccard, and Hamming distances give the poorest estimated objective function values of 

the distance metrics.  

Figure 13 of the minimum objective versus the number function evaluations shows the 

rapid convergence of k-NN models over iterations. The best observed feasible point 

determined by the Bayesian optimisation was the Euclidean 5-NN model with observed 

objective function value of 0.0118 and estimated objective function value of 0.0122. The 

best estimated feasible point (according to models) was the Euclidean 9-NN model with 

an estimated function value of 0.0122. 
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Figure 12. Bayesian optimisation of k-NN model hyperparameters distance metric and number of neighbours as a 
function of estimated objective function value after 30 iterations. 

 

Figure 13. Minimum objective values of 30 Bayesian optimisation iterations of trained k-NN models using 10-fold 
cross-validation. 
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Figure 14. Minimum objective values of 30 Bayesian optimisation iterations of trained bagged trees using 10-fold 
cross-validation. 

 

The bagged tree models were optimised over 30 iterations using Bayesian optimisation 

to evaluate the optimal number of learning cycles. The minimum objective versus 

number of function evaluations plot (Figure 14) shows minimal change in the minimum 

objective with increasing function evaluation. The best observed feasible point had 476 

learning cycles with an observed function value of 0.0143 and estimated objective 

function value of 0.0143. The best estimated feasible point (according to models) is 

0.0143. 

The objective function model of the 3rd-order polynomial SVM (Figure 15) shows the 

Bayesian optimisation hyperspace in terms of kernel scale, box constraint and estimated 

objective function value after 21 iterations. The optimisation was set to run 30 iterations 

but was prematurely terminated for reaching a total objective function evaluation time 

of 150,000 seconds (41.67 hours).  
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Figure 15. Bayesian optimisation of SVM hyperparameters kernel scale and box constraint as a function of estimated 
objective function value after 21 iterations. 

 

Figure 16. Minimum objective values of 21 Bayesian optimisation iterations of trained SVMs using 10-fold cross-
validation. 
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Table 7. Bayesian optimised 3rd order polynomial SVM iterations with parameters evaluated as "best" based on 
objective function of 10-fold cross-validation. The iteration 16 was selected as the optimal SVM model using the mean-
plus-1 standard error of the cross-validation error. 

Iteration 
No. 

Objective Runtime 
(seconds) 

Best so far 
(observed) 

Best so far 
(estimated) 

Box 
Constraint 

Kernel 
Scale 

2 0.4999 623.64 n/a 0.4999 0.0016 89.33 

4 0.1716 464.94 0.1716 0.1915 2.8907 68.78 

5 0.0929 274.83 0.0929 0.0929 20.072 21.66 

7 0.0446 193.31 0.0446 0.0447 16.326 7.000 

10 0.0399 318.34 0.0399 0.0242 967.70 16.03 

12 0.0105 1689.7 0.0105 0.0109 162.17 4.116 

16 0.0057 3751.4 0.0057 0.0057 74.185 2.756 

19 0.0047 4023.6 0.0047 0.0054 39.554 2.239 

 

Table 7 contains the SVM iterations of the Bayesian optimisation that were determined 

as “best” based on the calculated objective function for that iteration. The training time 

(Runtime) in seconds, and values of the optimised hyperparameters box constrain and 

kernel scale are also presented. Using these iteration parameters, new SVM were 

trained with 10-fold cross-validation, and the training loss, validation loss, and average 

10-fold cross-validation loss with standard deviation, were plotted. The training loss is 

the misclassification error for the training set objects fitted within the 10-fold cross-

validation. The 10-fold cross-validation loss is the misclassification error of the cross-

validation evaluation. That is, the error of each of the 10 evaluation sets using the 9 

other training sets. The mean of the 10 errors and their standard deviation are plotted. 

The validation loss is the misclassification error of the independent validation set not 

used in model training. The optimal parameters for the SVM model are determined from 

the mean-plus-1 standard error for the smallest mean CV error. This is determined as 

iteration 16 with training, validation, and 10-fold CV loss of 0.0032, 0.0441, and 0.0034 

(±6.2 x10-3) respectively. 
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Figure 17. Comparison of training loss, CV-loss and validation loss of Bayesian-optimised SVM iterations. Based on 
mean plus 1 standard error, the parameters of iteration 16 are chosen as optimum for the SVM classification model. 

 

For the final SVM binary classification model the parameters of box constraint = 74.185 

and kernel scale = 2.7558 were used as per iteration 16 of the Bayesian optimisation 

(Table 7). The retrained model was tested with the independent test set (19,125 

observations) and the model statistics calculated. Presented below are the confusion 

chart and model statistics of the predicted test data. This model has an accuracy and F1 

score above 95% in the discrimination of human and animal blood stains up to 32 and 

49 days respectively.  

 

Table 8. Model statistics of SVM binary classifier. TOT = total number of observations predicted, PREV = prevalence; a 
measure of class distribution, ACC = accuracy, PPV = positive predictive value or precision, TPR = true positive rate or 
sensitivity, TNR = true negative rate or specificity.  

TOT PREV ACC PPV TPR TNR F1 score 

19125 0.4996 0.9564 0.9671 0.9470 0.9663 0.9569 
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Figure 18. Confusion chart of SVM prediction results of test data. 

 

3.4. Automatic Background Detection of bloodstain images 

The ABD algorithm was empirically modified for the identification of animal and human 

blood stains on white cotton. The typical reflectance spectra of background and sample 

tissue were visualised using an HSI cube containing both human and animal blood at 

different ages (see Figure 19). 
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Figure 21 and Figure 22 below show the steps of the ABD algorithm processing for fresh 

human and aged animal blood samples. The RGB image is generated from the red, green, 

and blue channels of the HSI datacube and based on the reflectance values and 

thresholds set by the ABD algorithm. A binary image is generated of pixels identified as 

background (black, value = 0) and those identified as sample (white, value = 1). The 

binary image is then further processed with ‘closing’ which effectively fills holes in the 

binary image (see Figure 20 (b) and (c)). Groups of pixels that are identified as sample, 

but connect to the image border are removed, giving the segmented binary image of 

Figure 19. RGB image of human (day 40), and cow (day 1 and day 0.1) blood stains on white cotton (top left) with 
coloured markers and corresponding reflectance spectra (bottom) which were used in the determination of the ABD 
thresholds that generate the binary background detection image (top right). Averaged spectra in order of maximum 
reflectance at band 1: purple = white cotton (high illumination), green = white cotton (low illumination), orange (cow 
blood - day 1), yellow (human blood – day 40), blue (cow blood – day 0.1), light blue (black metal), red (black cloth). 



52 
 

the samples. When these regions are overlayed onto the original RGB image, it can be 

seen that the ABD method successfully identifies blood stains in a given HSI image. 

 

 

Figure 20. Steps for ABD image processing. Fresh human blood samples (t = 0.1 days) where 1 is the RGB image 
generated from the HSI cube, 2 is the binary ABD image where white indicates "non-background", 3 is the segmented 
binary image after 'opening' and border removal, and 4 is the mask of identified blood stains (blue) overlayed onto 
the RGB image.     

1. RGB image of day 0.1 human blood 2. ABD binary image

3. Segmented image after 'opening' and  
border removal

4. ABD Mask overlay on RGB image
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Figure 21. Steps for ABD image processing. Aged animal blood samples (t = 25 days) of mouse (left column), rabbit 
(middle column) and rat (right column), where 1 is the RGB image generated from the HSI cube, 2 is the binary ABD 
image where white indicates "non-background", 3 is the segmented binary image after 'opening' and border removal, 
and 4 is the mask of identified blood stains (blue) overlayed onto the RGB image.    

 

The ABD algorithm successfully identifies human and animal blood stains from 

background white cotton, ink, the white reference plate, and the orange calibration 

plate. The blood stains are also identified irrespective of sample age here being shown 

to identify blood samples at t = 0.1 days and t = 25 days.  

 

1. RGB image of day 25 animal blood 2. ABD binary image

3. Segmented image after 'opening' and  
border removal

4. ABD Mask overlay on RGB image



54 
 

3.5. Classification of HSI images 

The HSI images associated with the test data set were processed and classified using the 

trained SVM binary classifier. 1 individual from each of the animal classes and 1 human 

sample is presented in Figures 22-27 below. The RGB images are presented in the first 

row followed by the classified images directly under. The presented images are taken 

from each of the classification bins to illustrate the model’s performance with respect 

to aging. Pixels that are classified as “human” by the SVM classifier are coloured with a 

yellow mask, while pixels classified as “animal” are coloured with a blue mask. No 

further image processing was applied after SVM classification. 

 

 

Figure 22. HSI RGB images of aged human blood with (bottom row) and without (top row) SVM classification mask. 
The sample ages are (from left to right): 0.1 days, 2 days, 6 days, and 31 days. Yellow pixels are classified as “human” 
and blue as “animal”.  
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Figure 23. HSI RGB images of aged pig blood with (bottom row) and without (top row) SVM classification mask. The 
sample ages are (from left to right): 0.1 days, 1 day, 5 days, and 42 days. Yellow pixels are classified as “human” and 
blue as “animal”. 

 

 

Figure 24. HSI RGB images of aged mouse blood with (bottom row) and without (top row) SVM classification mask. 
The sample ages are (from left to right): 0.1 days, 13 days and 21 days. Yellow pixels are classified as “human” and 
blue pixels are classified as “animal”. 
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Figure 25. HSI RGB images of aged rat blood with (bottom row) and without (top row) SVM classification mask. The 
sample ages are (from left to right): 0.1 days, 13 days, and 25 days. Yellow pixels are classified as “human” and blue 
pixels are classified as “animal”. 

 

 

Figure 26. HSI RGB images of aged rabbit blood with (bottom row) and without (top row) SVM classification mask. The 
sample ages are (from left to right): 0.1 days, 1 day, and 49 days. Yellow pixels are classified as “human” and blue 
pixels are classified as “animal”. 
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Figure 27. HSI RGB images of aged cow blood with (bottom row) and without (top row) SVM classification mask. The 
sample ages are (from left to right): 0.1 days, 2 days, 6 days, 49 days. Yellow pixels are classified as “human” and blue 
are classified as “animal”.  

 

The misclassification observed in the human blood samples are randomly distributed, 

being observed across all samples ages. Such misclassification is evident in the animal 

bloodstains, in particular day 5 pig blood (Figure 23.c), day 0.1 mouse (Figure 24.a), day 

0.1 rat (Figure 25.a), and day 6 cow (Figure 27.c). These misclassifications are attributed 

to inhomogeneities in the bloodstains, where darker regions evident in the RGB image 

tend to be misclassified. No trend in the visual misclassification with increasing 

bloodstain age was observed, and it is reasoned the binning of classes as per Section 2.2 

negates the influence of sample age on the classification of bloodstains.  

 

3.6. Reflectance Spectra Characteristics 

The human and animal binary datasets of “fresh” day 0.1 bloodstains were plotted as 

average reflectance (Figure 28 Top left), average SNV-transformed reflectance (Figure 

28 Top right), and second derivative (Figure 28 Bottom left) with standard deviations as 

shaded area. Second-order derivative spectra were generated in order to resolve the 

undefined broad peaks, and to investigate differences between datasets. The animal 

spectra (red) have an overall greater standard deviation than the human (cyan), which 
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is to be expected given the greater total number of individuals in this class (20 human 

versus 66 animals), and by extension a greater number of spectra.  

The average reflectance and SNV reflectance spectra have typical profiles of blood 

reflectance spectra with the (low reflectance) double peaks of the haemoglobin Q-bands 

centred around 530 and 580 nm. A notable peak at ca. 670 nm is more pronounced in 

the animal reflectance spectrum than seen in human. In blood spectra, this is typically 

associated with the haemoglobin derivative, deoxyhaemoglobin73. This difference is 

accentuated in the SNV-transformed spectrum, which is considered significant given no 

overlap of the standard deviation curves. Additionally, the NIR region from ca. 760-910 

nm differs between human and animal SNV spectra, equating to compositional 

differences between human and animal blood. The 2nd derivative spectrum (Figure 28. 

Bottom left) elucidates 3 major peaks (negative peaks in reflectance appear as positive 

peaks in the 2nd derivative). These are situated at 530, 580, and 670 nm corresponding 

to the haemoglobin α and β Q-bands, and deoxyhaemoglobin. Less-pronounced peaks 

are centred around 630, 650, 725, 745 nm, with oscillations into the NIR portion, 

including the suspected lipid peak at 900 nm15. The derivative spectrum reinforces the 

assignment of the observed SNV peaks and resolves the likely contribution of lipids to 

the NIR region. 

Figure 29 presents the average reflectance (Left) and SNV reflectance (Right) spectra for 

the “fresh” day 0.1 images of the individual animal groups; pig, mouse, rat, rabbit and 

cow along with the human data. After SNV transformation, the greatest differences 

between spectra can be seen from 600 nm onwards. It is noted that pig, cow, and rabbit 

have a more pronounced 670 nm peak than that of rat, mouse, and especially human.  
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Figure 28. [Top left] Average reflectance spectra with stand and deviation (shaded area) of “fresh” day 0.1 human 
(cyan) and animal (red), and SNV-transformed spectra [top right]. [Bottom left] Average second derivative reflectance 
spectra, and [Bottom right] PC scores plot of the first two principal components (explained variance PC1 = 95.3%; PC2 
= 3.0%) of the SNV spectrum. 

 

 

Figure 29. [Left] Average reflectance spectra and [Right] average SNV reflectance [Right] of human (red), pig 
(magenta), mouse (cyan), rat (green), rabbit (blue), and cow (black). The number of individuals included in the average 
spectrum is denoted brackets (*) in the SNV reflectance legend. 
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Figure 30. PC loading plot of PC1 and PC2. The wavelengths from 670-685 nm have the greatest positive PC1 loadings 
(+0.156) with 900-955 nm having the greatest negative PC1 loadings (-0.090). The wavelengths centred around 610 
nm and to a lesser extent 510 nm, have the greatest positive PC2 loadings (+0.246 and +0.054) with 449 and 578 nm 
having the greatest negative PC2 loadings (-0.092). 

 

PCA was performed on the SNV-transformed reflectance spectra and the first two 

principal components plotted (Figure 28 Bottom Right). Two clusters of data 

corresponding to human (cyan, 1) and animal (red, 0) can be seen with greatest 

separation occurring along the PC1 (95% explained variance) score axis. This signifies the 

theoretical separation of these groups based on the first two principal components. The 

variable contribution to the PCs was further investigated using the corresponding PCs 

loadings plot. 

The PC loading plot of the SNV reflectance data is shown in Figure 30 above. A positive 

loading indicates that a principal component score and a given variable are positively 

correlated, while the negative loadings indicate negative correlation for a given variable 

and principal component. The largest loadings thus indicate the variables that have the 

greatest effect on the principal component. For PC1, the regions 670-685 nm and 900-
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955 nm have the greatest positive and negative correlation respectively. The latter 

region is associated with lipid and water absorbances15,16, and the former with 

deoxyhaemoglobin which has a peak centred around 660 nm73. This agrees with the 

wavelength regions weighted by the NCFS algorithm in Section 3.2, and suggests the 

proportionality of oxy- to deoxyhaemoglobin in animal and human blood can be used in 

their discrimination. The wavelength values 610 and 449 nm have the greatest 

respective positive and negative correlation with PC2.  
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4. Discussion 

4.1. Data acquisition and analysis 

The collection of blood samples and initial spotting was carried out over a period of 61 

days (17 July – 15 September 2020, see Appendix A). The number of samples varied 

between individuals of a species. For example; the 20 human samples were collected in 

batches of 5 individuals taken between 13 days from first to last sample, while all 20 pig 

samples obtained from the slaughterhouse were spotted on cotton and measured 

simultaneously on the same day as slaughter. The rat and rabbit samples had the longest 

time between the first and last sample collection of 48 days. The reason for this long 

acquisition phase is multifaceted: sample collection was often at the discretion of the 

provider and limited by the associated collection procedure. The mice, rat, rabbit, and 

pig blood samples were all obtained shortly after euthanasia, which for the latter, was 

timed per the slaughterhouse weekly working schedule. The former three cases, were 

dependent on the coordinating research institute’s own experimental endeavours, as 

the blood was obtained as an animal “side-product”. The human and cow blood samples 

for this work were taken in addition to routine blood donation and veterinary inspection 

respectively. For both sample groups, the complete cohort of samples was obtained in 

less than two weeks. The acquisition phase was also lengthened due to the need for 

establishment of collaborative connections between the parties involved, as well as the 

consideration of ethics and approval therein of the proposed study.  

Despite the ill-defined acquisition time period, sample storage and preparation 

measures were considered to provide close to “fresh” blood sample measurements. 

Each blood sample was collected into anticoagulant-containing aliquots, and where 

necessary, refrigerated until preparation. To remove temperature dependence between 

samples, blood aliquots stored under refrigeration were allowed to warm to room 

temperature prior to probe preparation. EDTA25 was chosen as the anticoagulant of 

choice mainly due to its lack of absorbance in the 400-1000 nm operating window of the 

HSI system. It has the added benefit of not significantly altering blood component 

morphology or counts, and therefore assumed to have little to no effect on the observed 

reflectance spectrum of blood.   
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Prior to exposure to HSI illumination and subsequent measurement, each blood sample 

was carefully blotted onto the white cotton surface and allowed to dry-in over a 

minimum period of 10 minutes. This allowed for the blood to be effectively absorbed 

onto the cotton fabric and reduced pooling of blood that would otherwise affect the 

reflectance measurement. Additionally, in the context of forensic analysis, blood would 

rarely be encountered by the forensics team as being deposited “fresh” at a crime scene 

and bloodstains would have likely surpassed the time of absorption onto surfaces and 

fabrics before analysis. To prevent the premature degradation of blood, the halogen 

light sources were only switched on for the duration of the HSI measurement. This was 

approximately 1-minute total from centring the sample in the image frame and image 

focusing, to total hypercube recording time.  

Once images of the initial “fresh” blood stains were recorded, the samples were left 

exposed to ambient temperature and allowed to undergo degradative aging. Blood 

samples prepared on a single day, such as the pig blood, are expected to be free of any 

error, with respect to rate of degradation per individual during the aging process 

primarily due to environmental conditions. This is in contrast to the rat and rabbit 

samples (see Appendix A), in which the first three and last two individuals differs by over 

a month. As ambient temperatures in mid-summer can differ significantly compared to 

late-summer in the not climate-controlled room of the HSI system set-up, this could be 

relevant to the rate of degradation. Therefore, it can be reasoned that blood samples 

potentially did not age at equivalent rates between individuals of a given species and 

ultimately between species groups. Moreover, this could make the comparison of all 

samples by relevant age questionable, hence sample ages are taken as a guide to the 

expected extent of degradation. This observation was an additional reason for the 

binning of HSI images by age before training the classification models. 

 

4.2. Class balancing and classification framework 

Given the high number spectra, the undersampling balancing method was chosen to 

balance the data per bin and per species. The low number of individuals in the rat group 

and the average deposited blood volume, makes the rat group the minority group to 
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which the data was balanced to. The pig, mouse, rabbit, rat, and cow were all balanced 

to 1/5 of the total number of human spectra, to give 1:1 balancing between the “human” 

and “animal” classes of the binary classification. Based on total number of spectra, this 

balancing method should give a classification model that is without bias between the 

two binary classes, and ensures one particular animal species is not over or 

underrepresented within the animal class. The results of Figures 22-27 show little-to-no 

age bias, or bias towards species in the misclassification of pixels. This point is further 

explored in Section 4.5.  

 

4.3. Pre-processing 

The reflectance spectra were initially pre-processed by truncation removing noise at the 

extremities caused by the low camera sensitivity and low power halogen light source. A 

Savitzky-Golay filter of polynomial order 2 and a window of 9 spectral band was 

empirically determined based on the degree of smoothing in the NIR range from 700-

1000 nm and against the trade-off of the sharpness of the haemoglobin Q-bands in the 

visible region. The effective wavelength range was thus 445-955 nm. While this method 

eliminated significant noise in the spectra inherent to the HSI system electronics, the 

Soret band74 of ca. 400-420 nm is not observed. This band has been previously shown 

to correlate the degree of blue shift with blood age75. However, this peak has not been 

widely studied in mammalian species and its usefulness in the HSI classification of 

human and animal bloodstains is unknown. 

 

4.4. Neighbourhood Component Feature Selection 

In the building of the binary classification model several methods of feature selection or 

feature reduction were tested using a basic 1-NN classifier with the training dataset. 

These methods include derivatisation, SNV transform, PCA with SNV-transformed data, 

PCA with second derivative, and various feature selection methods (Chi-squared, 

minimum redundance maximum relevance (MRMR), and NCFS). The best method was 

determined as SNV-transformed NCFS. The NCFS method was then optimised by 10-fold 
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cross-validation to determine the optimal λ-value for feature weighting. As 

demonstrated in Figure 9, there is a general increasing trend in the 10-fold loss with 

increasing λ-value, and therefore the λ-value of zero was taken. Given the highly-

correlated nature of individual wavelength values in a given reflectance measurement, 

the negative impact of excluding wavelengths via a larger regularisation parameter is 

expected. This in turn gives every wavelength a feature weight greater than 1. This 

signifies each wavelength is important to some degree in the differentiation between 

human and animal blood spectra. For this reason, instead of viewing features as either 

“important” (feature weight > 0) or “not important” (feature weight = 0), the features 

can be ranked in terms of importance based on their respective percentage weight of 

the maximum weighted feature. Figure 10 shows for a given feature/wavelength there 

is an associated weight as determined by the NCFS algorithm.  

The red circles of NCFS feature values form a feature weight-index curve that illustrates 

the correlation between wavelengths and their respective importance in distinguishing 

human and animal blood reflectance spectra. It can be concluded that the wavelength 

bands of most importance (in descending order of feature weight) are centred around: 

680, 955, 725, 445, 645, 775, and 600 nm. These peaks can then be used to infer the 

contributions of blood components to the observed reflectance spectra and give an 

indication of the potential underlying differences between human and animal blood. 

The importance of the extrema (445 and 995 nm) could be a result of the SNV transform 

applied to the spectra for normalisation and standardisation. This transform rescales the 

reflectance values to have values between 1 and -1 which are centred around the mean 

of 0. This has the effect of distorting the spectra with respect to the spectrum maximum. 

This is seen in Figure 28 where the human and animal reflectance spectra without SNV 

are overlapping irrespective of sample age, while two (or more) groups of spectra are 

seen in both human and animal training SNV-transformed spectra correlating to “old” 

and “fresh” blood samples. In the averaged reflectance spectra of the individual species 

(see Figure 28), different values for the extrema are also a noteworthy characteristic of 

each species’ spectrum.  

As blood spectra from all samples are included in the NCFS calculation, it can be assumed 

that the feature weights are independent of blood age and thus spectral differences 
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attributed to the varying composition. This is evident in the alpha and beta Q-bands at 

ca. 550 and 575 nm which are a result of oxy- and deoxyhaemoglobin76 derivatives, 

having feature weights below 50% of the maximum weighted feature by the NCFS 

algorithm. That being said, the region between 600 and 750 nm is often attributed to 

the derivatives HHb (broad peak 600-700, sharp peak at 760 nm) and metHb at 630 nm.   

 

4.5. Classification of HSI images 

In building the machine learning models, a train/test split method was implemented as 

model test validation. 10-fold cross-validation was also implemented within the NCFS 

optimisation and validation of the Bayesian-optimised SVM iterations. The mean plus 1 

standard error was used in determining the optimal model which is the least likely to 

experience overfitting, and this model tested on the independent test set. An alternative 

validation method to the train/test split validation is the leave-one-out cross-validation 

(LOOCV). This method is a special form of cross-validation, where the complete dataset 

is used, and the number of validation folds is equal to the number of observations in the 

data set. n-1 folds are used as a training set for the selected learning algorithm with a 

single observation being used as the test set. This process is then repeated for each fold 

of the dataset. Despite LOOCV being a very robust method for testing models, it is also 

computationally expensive. In addition, it can be assumed that the variation between 

individual spectra of a given bloodstain is less than that between different bloodstains. 

A modified form of LOOCV is the leave-one-patient-out cross-validation; where the data 

is divided into folds based on the number of individuals in the dataset and the complete 

data from each individual is used in turn as test set. Nevertheless, this approach would 

require significantly more calculation and would not be expected to improve the binary 

classification, considering the relatively small differences between 20 bloodstains (or 

less) per species. 

The optimised SVM classifier has good statistical values for the independent test 

dataset. All major predictors including accuracy, precision, sensitivity, specificity, and F1 

score are all above 95% (round up) as per Table 8.  The model’s predictive power in the 

discrimination of human and animal blood is evident in the correctly classified images 
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of Figures 22-27. The bloodstains in general across all species are correctly classified, 

where the human sample is classified yellow signifying the “human” classification label, 

and pig, mouse, rat, rabbit, and cow blood are all classified blue as “animal”.  

There is no apparent trend in the observed misclassification of pixels with respect to 

aging. For example, the human day 0.1 (Figure 22a) and day 2 (Figure 22b) have 

seemingly more misclassifications (blue pixels) comparatively to the day 6 (Figure 22c) 

and day 31 (Figure 22d). This is in contrast to the pig blood which has a high 

misclassification (yellow pixels) for the day 5 (Figure 23c) image versus the images of the 

fresher (Figure 23a and 23b) and older blood (Figure 23d).  

Although not very apparent in the human classification images, there is often a ring-like 

misclassification on the surrounding edges, or of areas of darker red seen in the RGB 

images. This is most significant in Figure 24a (mouse blood, day 0.1), Figure 25a (rat 

blood, day 0.1), and Figure 27c (cow blood, day 6), albeit present to a lesser extent in 

other images. This misclassification on the periphery of the blood stain is most likely the 

result of capillary flow77, where the edges of the blood stain appear darker due to the 

higher concentration of haemoglobin and its derivatives. This has been observed in 

blood stain age studies that used cotton78 as a deposition surface. Nevertheless, for the 

reflectance measurements in this study the region of interest was centred in the middle 

of the blood stain for each sample. This method should still account for inhomogeneities 

in the blood stains. Such inhomogeneities are apparent in the pig and rat blood images 

(Figure 23 and Figure 25). These darkened areas, or particles, are believed to be 

coagulated RBCs which formed irrespective of EDTA use. Another factor to this is the 

fragility of pig RBCs which readily undergo haemolysis with improper handling79. A jelly-

like substance of coagulated material was observed in 11 out of the 20 pig samples, 

which was not spotted onto the cotton fabric. These samples also gave lighter coloured 

blood stains, which is likely due to the reduced number of suspended RBCs. This 

coagulation would have a similar effect as the dark peripheral rings from capillary flow, 

in that the tighter packed RBCs would absorb more light and light scattering effects 

would increase with sample thickness. Despite this, the observation of dark areas within 

the blood stain does not always result in misclassification. This fact can be seen in the 
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apparently uniform human blood (Figure 22a) which has notable misclassified pixels, 

while the cow blood (Figure 27a) is without. 

Given the differences between individual species spectra (see Figure 29), it is reasoned 

that the classification methods outlined herein could be expanded for the discrimination 

between different animal species. This is supported additionally by the identified 

important features from the NCFS algorithm, and PCA. The parameters of the trained 

SVM could be used as a starting point for the new multi-species classifier, which could 

also include a broader animal dataset. This point is extended to the current binary-

classifier, which lacks common domestic animals such as cats, dogs, sheep, goat, and 

horse, – and less common – fish, reptiles, and birds. The development of such a classifier 

would have additional applications in wildlife crime, where identification of species on-

site would significantly reduce investigation times. 

The developed classifier could be modified, or coupled to a separate algorithm for the 

simultaneous determination of bloodstain age. In the reconstruction of a crime, one of 

the primary goals of the investigator is the determination of the time when a crime is 

committed. The establishment of the age of a bloodstain could prove the difference 

between a conviction or not in a court of law. For these reasons, there has been 

significant interest in the research of deposited blood age80. Raman spectroscopy81, IR 

spectroscopy82,83, and reflectance spectroscopy78,84 have all been used in blood age 

determination. In particular, vis-NIR HSI similar to that used in this paper, has been 

successfully used for the age estimation of bloodstains10–12. The methods for age 

determination outlined in these papers could be adapted and incorporated into a 

workflow that includes the presented SVM human-animal classifier. For example, the 

methods of Cadd et al. (2018)9 are based on the absorption of haemoglobin and its 

derivatives between 400 and 680 nm, which has little overlap with the NCFS region (ca. 

620-800 nm) selected in this work. These two methods could be therefore used in 

tandem to achieve both species determination and age estimation from one HSI system. 
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4.6. Bloodstain spectra analysis 

To better understand the SVM classification, the spectral differences between the 

animal and human spectra were investigated. The binary classes of human and animal 

spectra containing spectra from all animal species, were plotted as average reflectance 

with standard deviation as an indication of variance within the dataset (Figure 28). The 

data from the “fresh” or day 0.1 HSI measurements were exclusively used to examine 

the differences without the composition changes associated with aging. Both human 

(cyan) and animal (red) reflectance spectra have the characteristic double peaks of the 

haemoglobin Q-peaks at ca. 540 nm for the α-band and ca. 580 nm for the β-band. Given 

the conserved nature of haemoglobin within the RBCs of mammals, this is to be 

expected. The deviation from the mean, in both human and animal reflectance spectra, 

is most likely due to inhomogeneities in the blood samples as well as subtle differences 

between measurement conditions including instrumental noise. However, in spite of 

this, the region between 620 and 750 nm differs between human and animal average 

reflectance spectra. A peak centred around 670 nm is evident, which is more 

pronounced in the animal spectra than the human.  

The SNV-transform reflectance spectrum accentuates the subtle differences between 

the human and animal average spectra. For the most part, the spectra are near identical 

up to ca. 620 nm where the human spectrum has a higher SNV reflectance value than 

the animal spectrum. The standard deviation shaded regions do not overlap from ca. 

640-690 nm signifying a definite characteristic between the two datasets. The region 

from ca. 760-925 nm also deviates between the SNV spectra. Upon inspection of the 

second derivative spectrum (Figure 28, Bottom left), the first region ca. 670 nm 

correlates with that described in the SNV spectrum and is attributed to HHb. The pure 

spectrum of HHb24 features an additional peak centred around 760 nm, which is not 

evident from the reflectance nor SNV-transformed spectrum. When considering the 

individual species’ reflectance spectra of Figure 29, it is noteworthy that this second HHb 

peak features in the rat spectrum (green). If the peak at 670 nm was due to Hbb, it would 

be expected that the second peak at 760 nm would likewise be visible in all species’ 

spectra. This discrepancy could be due to; rat blood having higher relative concentration 

of HHb, unknown components in other species’ blood obscuring the latter HHb peak, 
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additional scattering phenomenon as a result of differences in RBC morphology and 

haematology between species. It could also be that the peak at 670 nm is of different 

origin other than HHb. As the spectra are representative of “fresh” day 0.1 blood sample, 

the effects of haemoglobin degradation to MetHb (630 nm absorbance) or HC should be 

minimal and can be ruled out as a major cause for the differences observed between 

spectra.  

The unique structure and composition of blood, results in special scattering and 

absorption, that is influenced by osmolarity, haemolysis, and haematocrit24. This is, in 

part, due to the optical path of a photon within RBCs being increased due to multiple 

reflections at its internal boundaries of the cell. Thus, haemolysed RBCs have reduced 

scattering properties, resulting in the overall decrease in absorption coefficient. 

Additionally, the RBC refractive index increases with higher RBC haemoglobin 

concentration in the hyper-osmolar state, with higher number of internal reflections 

increasing the total absorption coefficient. The absorption coefficient of isotonic blood 

increases linearly with HCT up to 45%, where RBC aggregates are suspected to cause 

increased scattering, leading to a non-linear dependence above 45%24. In pig blood, 

where RBCs are crenelated and fragile (see Appendix B), osmolarity and haemolysis are 

of particular interest. The pig RBC fragility was evident in the obtained blood samples – 

many coagulated despite the use of EDTA (see Appendix A). The coagulation could also 

be due to the high tendency of pig RBCs to form Rouleaux (Table 1). For the reasons 

outlined above, this explains the overall higher reflectance of pig blood compared to 

human, rat, rabbit, and cow (Figure 29, Left). The bloodstains generated from samples 

with evident coagulation, were also pale-red in appearance compared to non-

coagulated samples – which is a result of the reduced RBCs. The typical HCT values for 

all species – except for cow (21-30%) – are within a comparable range (40-53%). 

Due to the aforementioned internal reflection, animal RBCs that are larger have greater 

absorption coefficient due to increased scattering. Cow RBCs are also amongst the 

smallest of the studied species at 5.5 μm, having overall lower Hb (8.4-12 g/dL blood), 

signifying a reduced oxygen capacity. Despite this, the averaged cow reflectance 

spectrum (Figure 29) shows the highest overall reflectance. Mice and rat RBCs are 

comparable in size (5-7 μm), being not much smaller than the average human RBC (7.5 



71 
 

μm). While Hb values are also diminished in rodents compared to humans, this is 

accounted for by the almost double RCC. Despite this, the haemoglobin concentration 

in the average RBC, or MCHC value is 28-32 g/dL RBCs, compared to 33-36 g/dL RBCs in 

humans. Rodent blood would therefore be expected to absorb light to a lesser extent 

than human blood. Upon inspection of the reflectance spectra however, it can be seen 

that mouse has an overall greater reflectance than human, and rat. This could be due to 

the mouse blood acquired being cardiac blood, as opposed to venous blood of the other 

species. In any case, mouse, rat, – and by extension rabbit blood – have an expected 

lower oxygenation capacity and higher HHb concentration compared to human. This is 

seen in the reflectance spectra of the lesser slope at 600-660 nm and the double HHb 

peaks centred around 670 nm and 760 nm.  
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5. Conclusions 

The novel application of vis-NIR HSI was successfully used in the detection and 

discrimination of human and animal bloodstains on white cotton. The classification of 

blood was based on 68 features (wavelengths) of the SNV-transformed reflectance 

spectrum, primarily in the range 600-800 nm as determined by NCFS. These features 

were used to train several classifiers, where the optimised polynomial-SVM achieved an 

F1 score of 95.7% when classifying the independent test dataset. In the processing of 

hyperspectral images, bloodstains were detected using the background detection 

algorithm ABD, and pixels identified as human or animal blood were coloured yellow 

and blue respectively. This enhanced the visualisation of the SVM classifier results. The 

bloodstains were aged over a period of 50 days, with successful classification being 

achieved independent of bloodstain age. 

The main cause for misclassification of pixels was due to capillary flow, and bloodstain 

inhomogeneities as a result of particulate matter i.e., coagulation. The aforementioned 

capillary flow is characteristic of the deposition fabric cotton, which would be expected 

to be minimal on other deposition surfaces. Coagulation is believed to have been a result 

of species blood properties, – such as the fragility associated with pig RBCs – or the 

tendency for the formation of Rouleaux. In these cases, aggregated matter was 

nevertheless observed, despite use of the EDTA as anticoagulant. This demonstrates a 

potential weakness in the classifier, as blood encountered at a crime scene features no 

anticoagulant and thus the formation of aggregates are likely. The enhanced scattering 

properties of thicker blood stains could result in more misclassification, and potentially 

failure in the detection of bloodstains using the ABD method. It is therefore suggested, 

that further studies are required into the effects of bloodstain thickness on the ability 

to detect and discriminate blood stains. 

The discrimination of blood stains is hypothesised to be based on compositional 

differences between species blood – in particular deoxyhaemoglobin content, and 

morphophysiological differences between RBCs. To validate this hypothesis, further 

studies into the effect of morphophysiological differences of animal RBCs on the 

measured vis-NIR reflectance spectrum are required.  
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The deposition surface of white cotton was selected due to its high reflectivity, which 

aids the visualisation of bloodstains. It is spectroscopically featureless, meaning there 

was no contribution to the measured vis-NIR reflectance of blood. Cotton is also 

forensically relevant, being the predominant fabric in domestic clothing. Future 

extensions of this work should be performed using a variety of domestic fabrics e.g., 

wool, leather, cellulose/viscose, linen, and synthetics (polyester). These would be 

textually distinct to cotton, being different physically in the absorption of blood into the 

fabric with different degrees of pooling, or wicking of blood after initial deposition. As 

vis-NIR reflectance is used, the effect of fabric colour on the ability to discriminate 

human and animal blood should be investigated. As has already been reported in the 

age-determination of bloodstains using spectroscopic methods, darker-coloured 

materials typically reduce the performance of the classifier. This is important in forensic 

investigations where blood can be deposited onto a variety of coloured materials in 

various environments. Following fabrics, materials such as wood, stone, ceramics, 

plastics, and metals need to be investigated. This would give conclusive insight into the 

classifiers’ ability to function in any given condition encountered at a crime scene.  

To better establish the effectiveness and reliability of the discrimination of animal and 

human blood on white cotton, large-scale blind tests are required. The inclusion of more 

species such as; cat, dog, horse, chicken, sheep, goat, fish, and reptiles into the animal 

repertoire, would increase the confidence in the classifier’s ability to truly discriminate 

human blood from that of any animal. In addition, a multiclass model to discriminate 

between animal species is a possible future extension of this work. Not only would this 

bring greater applicability of the method to wildlife forensics, but the analysis of the 

classifier would bring greater understanding of the differences between human and 

animal blood reflectance spectra. Environmental variables, such as humidity and 

temperature should be further explored, as these could influence the degradation of 

bloodstains. Following from this, limits of detection with respect to age and dilution 

should be investigated. 

The featured HSI system has significant benefits in the discrimination of human and non-

human bloodstains. Its portable, non-contact, and non-destructive nature lends itself to 

forensic investigation, having the capability of on-site detection and evaluation of 
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forensic evidence. This, in turn, reduces time and money that would be otherwise lost 

to lengthy laboratory analysis procedures. Such a system could be expanded to include 

blood age-determination methods as previously outlined, and has the potential to 

become the workhorse of forensic investigation. The vis-NIR reflectance analysis of 

many forensically-relevant substances could have future applications in research areas 

of toxicology and post-mortem investigation, and other types of crimes including (but 

not limited to) fraud, forgery, and arson. Ultimately, when fully developed, this HSI 

methodology could be implemented directly at the crime scene, for the discrimination 

of human and non-human bloodstains. This would significantly benefit forensic 

casework, especially in the initial stages. 
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Appendix A. Hyperspectral data 

Table 9. Datasheet of 20 human donor obtained from the Institut für Transfusionmedizin, Universitätsklinikum 
Leipzig. Samples were prepared and measured on the same day as collection. 

Number Gender Age [years] Collection Date 

1 Female 68 05 August 2020 

2 Male 56 05 August 2020 

3 Male 61 05 August 2020 

4 Male 26 05 August 2020 

5 Female 59 05 August 2020 

6 Male 20 07 August 2020 

7 Female 56 07 August 2020 

8 Male 42 07 August 2020 

9 Female 21 07 August 2020 

10 Female 31 07 August 2020 

11 Female 25 11 August 2020 

12 Male 50 11 August 2020 

13 Male 61 11 August 2020 

14 Female 48 11 August 2020 

15 Female 52 11 August 2020 

16 Male 20 17 August 2020 

17 Female 28 17 August 2020 

18 Female 25 17 August 2020 

19 Male 40 17 August 2020 

20 Male 50 17 August 2020 

 

Table 10. Datasheet of pig blood samples obtained from Schlachthof Weißenfels, Weißenfels.'Coagulation' signifies a 
separation of RBC from plasma before probe preparation. Samples were prepared and measured on the same day as 
slaughter.  

Number Gender Age Other Slaughter Date 

1 - - Coagulation 09 September 2020 

2 - - Coagulation 09 September 2020 

3 - - - 09 September 2020 

4 - - Coagulation 09 September 2020 

5 - - Coagulation 09 September 2020 

6 - - Coagulation 09 September 2020 

7 - - - 09 September 2020 
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8 - - - 09 September 2020 

9 - - - 09 September 2020 

10 - - Coagulation 09 September 2020 

11 - - - 09 September 2020 

12 - - - 09 September 2020 

13 - - - 09 September 2020 

14 - - - 09 September 2020 

15 - - - 09 September 2020 

16 - - Coagulation 09 September 2020 

17 - - Coagulation 09 September 2020 

18 - - Coagulation 09 September 2020 

19 - - Coagulation 09 September 2020 

20 - - Coagulation 09 September 2020 

 

Table 11. Datasheet of mouse blood samples obtained from the Medizinisch-Experimentelles Zentrum (MEZ), Leipzig. 
Sample probes were prepared and measured on the same day as collection.  

Number Strain Gender Age [Days] Collection Date 

1 CD1/CR Female 107 17 July 2020 

2 CD1/CR Female 107 17 July 2020 

3 CD1/CR Female 107 17 July 2020 

4 CD1/CR Female 107 17 July 2020 

5 CD1/CR Female 107 17 July 2020 

6 CD1 Male 46 30 July 2020 

7 CD1 Male 46 30 July 2020 

8 CD1 Male 46 30 July 2020 

9 CD1 Male 46 30 July 2020 

10 CD1 Male 46 30 July 2020 

11 Sv12952 Female 90 18 August 2020 

12 Sv12952 Female 90 18 August 2020 

13 Sv12952 Female 90 18 August 2020 

14 Sv12952 Female 204 18 August 2020 

15 Sv12952 Female 90 18 August 2020 

16 Sv12952 Female 191 18 August 2020 
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Table 12. Datasheet of rat blood obtained from the Medizinisch-Experimentelles Zentrum (MEZ), Leipzig. Sample 
probes were prepared and measured on the same day as collection. 

Number Strain Gender Age [Days] Collection Date 

1 SPRD Male 72 17 July 2020 

2 SPRD Male 72 17 July 2020 

3 SPRD Male 72 17 July 2020 

4 SPRD Female 183 2 September 2020 

5 SPRD Female 183 2 September 2020 

 

Table 13. Datasheet of rabbit blood obtained from the Medizinisch-Experimentelles Zentrum (MEZ), Leipzig. Sample 
probes were prepared and measured on the same day as collection. 

Number Strain Gender Age [Year, Month] Collection Date 

1 White New Zealander Female 1 yr 8 m 17 July 2020 

2 Chinchilla Bastard Male 3 yr 2 m 17 July 2020 

3 White New Zealander Female 1 yr 8 m 17 July 2020 

4 Chinchilla Bastard Female 11 m 2 September 2020 

5 Chinchilla Bastard Female 10 m 2 September 2020 

 

Table 14. Datasheet of cow blood samples obtained from the Klinik für Klauentiere, Leipzig. Samples probes were 
prepared and measured on the same day as collection. 

Number Gender Age Other Collection Date 

1 - - Separation 11 September 2020 

2 - - Separation 11 September 2020 

3 - - Separation 11 September 2020 

4 - - Separation 11 September 2020 

5 - - Separation 11 September 2020 

6 - - Separation 11 September 2020 

7 - - - 11 September 2020 

8 - - - 11 September 2020 

9 - - - 11 September 2020 

10 - - Coagulation 11 September 2020 

11 - - - 11 September 2020 

12 - - - 14 September 2020 

13 - - - 14 September 2020 

14 - - - 15 September 2020 

15 - - - 15 September 2020 

16 - - Coagulation 15 September 2020 
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17 - - Coagulation 15 September 2020 

18 - - Coagulation 15 September 2020 

19 - - Coagulation 15 September 2020 

20 - - Coagulation 15 September 2020 
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Appendix B. Haematological Parameters 

Table 15. Laboratory Variables Relevant to Hematologic Diagnosis (Normal Human Adult Values), adapted from 
Williams Manual of Hematology, 9ed85. 

Variable (Common Abbreviation) Male Female  Units 

Haematocrit (HCT) or Packed Cell 

Volume (PCV) 

42-51 36-46 % or mL RBC/dL 

blood 

Haemoglobin (Hb) 14-18 12-15 g/dl blood 

Red cell count (RCC) 4.5-6.0 4.1-5.1 106/mL 

Mean cell volume (MCV) 80-96 79-94 fL/cell 

Mean cell haemoglobin (MCH) 27-33 pg/cell 

Mean cell haemoglobin concentration 

(MCHC) 

33-36 g/dL red cells 

Red cell distribution width (RDW) <15 % 

Reticulocyte count 0.5-1.5 % of red cells 

Reticulocyte haemoglobin (CHr) 27-33 pg/cell 

Total blood volume (TBV) 65-85 55-75 mL/kg 

Plasma volume (PV) 39-44 mL/kg 

Red cell mass (RCM) 25-35 mL/kg 

Platelet count 175-450 103/μL 

White cell count (WBC, WCC) 4.8-10.8 103/μL 

Absolute monocyte count 0.3-0.8 103/μL 

Absolute neutrophil count 1.8-7.7 103/μL 

Absolute lymphocyte count 1.0-4.8 103/μL 

 

Haematology of Laboratory Mice and Rats (Mus musculus and Rattus 

norvegicus)86 

As with most other species, blood cell counts in rodents are generally higher in 

peripheral veins than in central or cardiac blood87. Due to the demanding nature of 

venepuncture in rodents, a blood volume of 5.5 mL/kg body weight can be safely 

collected from live rats at various sites but collection is typically a terminal procedure in 

mice. There are several preclinical factors that can affect haematological results in 

rodents including (but not limited to); sex, age, diet, fasting status, collection site, 

anticoagulant used, and stress induced by prior handling. For example, older rats and 

mice have higher RBC counts and less reticulocytes than younger animals.  
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Table 16. Reference Interval for Haematologic Parameters in Diet-Restricted 7-10 Week Old CD-1 mice collected 
under isoflurane anaesthesia86. 

Variable (Common Abbreviation) Male Female Units 

Haematocrit (HCT) or Packed Cell 

Volume (PCV) 

42.7-52.9 43.2-56.3 % or mL RBC/dL 

blood 

Haemoglobin (Hb) 12.6-16.3 13.2-16.4 g/dL blood 

Red cell count (RCC) 7.82-10.11 7.9-10.12 106/mL 

Mean cell volume (MCV) 47.6-56.2 48.8-58.9 fL/cell 

Mean cell haemoglobin (MCH) 14.7-16.8 15-16.7 pg/cell 

Mean cell haemoglobin 

concentration (MCHC) 

28.7-32.1 27.9-33.2 g/dL red cells 

Red cell distribution width (RDW) 11.6-13.5 11.7-14.8 % 

Absolute Reticulocyte 202.9-388.4 150-477 106/mL 

Total blood volume (TBV) 6.3-8.0 mL/kg 

Plasma volume (PV) 39-44 mL/kg 

Platelet count 1121-1752 630-1559 103/μL 

White cell count (WCC) 0.47-5.16 0.25-5.18 103/μL 

Absolute monocyte count 0-0.08 0-0.09 103/μL 

Absolute neutrophil count 0.29-1.3 0.02-1.12 103/μL 

Absolute lymphocyte count 0.49-3.92 0.23-4.51 103/μL 

 

Mature RBCs in mice are round, anucleate, biconcave disks with central pallor. In adult 

mice, RBCs have a mean diameter between 5 and 7 μm with a thickness of 2.1-2.13 μm 

and cell volumes of 40-50 fL. Rat RBCs are also anucleate biconcave disks with a mean 

diameter ranging from 5.7-7 μm. Due to the higher concentration of reticulocytes, mice 

and rats have greater anisocytosis (unequal sized RBCs) and polychromasia (abnormally 

high number of immature RBCs) compared to non-rodent species. The estimated 

lifespan of RBCs in rats is between 56 and 69 days88, while in mice it is between 41 and 

52 days86.  

 

Haematology of Laboratory Rabbits (Oryctolagus cuniculus) 

Blood collection is usually performed at the marginal ear vein of rabbits, with other 

collection sites such as the jugular vein and direct cardiac puncture being reserved for 

terminal exsanguination procedures89. The total blood volume in rabbits is typically 53.8 

± 5.2 mL/kg90,91 with the maximum safe volume of blood collection being 7.7 mL/kg body 
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weight92. The haematological values for New Zealand white rabbits are presented in 

Table 17 below. 

Table 17. Referenced Haematological parameters of New Zealand white rabbit (Oryctolagus cuniculus). 

Variable (Common Abbreviation) Male Female Units 

Haematocrit (HCT) or Packed Cell 

Volume (PCV) 

40.4 ±3.05 37.8 ±2.31 % 

Haemoglobin (Hb) 13.7 ±1.0 12.8 ±0.78 g/dl blood 

Red cell count (RCC) 6.75 ±0.533 6.22 ± 0.484 106/mL 

Mean cell volume (MCV) 59.9 ±2.78 60.9 ±2.4 fL/cell 

Mean cell haemoglobin (MCH) 20.4 ±0.97 20.8 ±0.93 pg/cell 

Mean cell haemoglobin 

concentration (MCHC) 

34.0 ± 0.52 34.1 ± 0.61 g/dL red cells 

Total blood volume (TBV) 53.8 ±5.2 mL/kg 

White cell count (WCC) 9.5 ±2.07 8.4 ±2.24 103/μL 

Monocyte count 1 ±1.1 % 

Heterophil count 32 ±10.95 34 ±15 % 

Lymphocyte count 62 ±13.2 61 ±11.3 % 

 

Rabbit RBCs are biconcave disks with an average diameter of 6.7-6.9 μm and a thickness 

between 2.15-2.4 μm. Anisocytosis is not uncommon in rabbits with polychromasia 

being observed in 1-2% of RBCs89. The rabbit RBC lifespan ranges between 45 and 70 

days93. 

 

Haematology of Swine 

Due to the low intrinsic value of individual animals, difficulties in blood collection, and 

the wide range of reported haematological parameter values, routine haematologic 

tests are not frequently performed in pigs94. Porcine RBCs are relatively fragile, with 

improper handling or excess turbulence often resulting in haemolysis79. Despite poor 

accessibility of veins, blood can be collected from the external jugular or anterior vena 

cava in sufficient quantities. The interpretation of porcine haematology data requires 

the consideration of variables such as sex, breed, diet, age, and management practice95–

97 as the range of haematological values are wide (see below).   



82 
 

Table 18. Reference intervals for the Domestic Pig94. 

Variable (Common Abbreviations) Range Average Units 

Haematocrit (HCT) or Packed Cell 

Volume (PCV) 

32-50 42.0 % 

Haemoglobin (Hb) 10.0-16.0 13.0 g/dL blood 

Red cell count (RCC) 5.0-8.0 6.5 106/mL 

Mean cell volume (MCV) 50-68 60 fL/cell 

Mean cell haemoglobin (MCH) 17.0-21 19.0 pg/cell 

Mean cell haemoglobin 

concentration (MCHC) 

30.0-34.0 32.0 % 

Reticulocyte 0.0-1.0 % 

Platelet count 5.2 ±1.95 105/μL 

White cell count (WCC) 11-22 16 103/μL 

Monocyte count 2-10 5.0 % 

Neutrophil count 28-47 37.0 % 

Lymphocyte count 39-62 53.0 % 

 

The porcine RBC is on average 6.0 μm in diameter, with artefactual crenation (abnormal 

notched surface due to osmotic water loss) and formation of rouleaux being common. 

The osmotic resistance has found to be pH-, temperature-, and time-dependent98,99. 

Anisocytosis is predominant in younger pigs and still present to a lesser extent in adult 

pigs. The RBC lifespan is typically 86 ±11.5 days. 

 

Haematology of Cattle 

The mature RBC of adult bovine has a relatively long lifespan of 130 days100. RBCs are 

biconcave with minimal central pallor, and have a diameter of 5-6 µm. The erythrocyte 

shape is uniform in adults with poikilocytosis (abnormal shaped RBCs) being found in 

otherwise apparently healthy calves. This could be due to the unique haemoglobin 

molecules found in ruminant animals; its association with the RBCs, or otherwise101. The 

RBC of ruminants, including cattle, is unique with respect to the phospholipid 

composition of the cellular membrane. Sphingomyelin (SM) is found in higher 

concentration compared to phosphatidylcholine (PC) in ruminants102. It is believed this 

is due to evolutionary pressure of coexisting ruminal ciliates (protozoa) which have a 

similar membrane make-up to RBCs and the resultant formation of anti-PC antibodies103. 
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There is a large amount of haemoglobin polymorphism in ruminants with respect to; 

breed, species, and individual development from embryo to adult104. The greatest 

polymorphism is observed in the protein β-chain. 

Table 19. Reference intervals for the adiva 120 from 99 Clinically Healthy Cows, 50% in First Lactation, All Milking 30-
150 days, from 10 Ontario Farms105. 

Variable (Common Abbreviation) Range Units 

Haematocrit (HCT) or Packed Cell 

Volume (PCV) 

21-30 % 

Haemoglobin (Hb) 8.4-12.0 g/dL blood 

Red cell count (RCC) 4.9-7.5 106/mL 

Mean cell volume (MCV) 36-50 fL/cell 

Mean cell haemoglobin (MCH) 14-19 pg/cell 

Mean cell haemoglobin 

concentration (MCHC) 

38-43 % 

Red cell distribution width (RDW) 16-20 % 

Reticulocyte 0.0-1.0 % 

Platelet count 1.6-6.5 105/μL 

White cell count (WCC) 5.1-13.3 103/μL 

Monocyte count 0.1-0.7 103/μL 

Neutrophil count 1.7-6.0 103/μL 

Lymphocyte count 1.8-8.1 103/μL 

 

The haematological reference intervals in cattle are broad, mainly due to the lack of 

consideration of; animal age, sex, physiological state, or form of restraint when sampling 

occurs. Differences in breeds have been reported in beef cattle compared to dairy cattle, 

the latter of which have lower RBC values. Similarly, bulls have greater RBC counts 

compared to cows, with lactating cows having lower RBC, WBC and plasma protein 

counts than non-lactating105,106. Diet has a significant influence on bovine plasma 

colouration, ranging from dark yellow to colourless depending on plant chromogens 

present. 
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Appendix C. Machine Learning Methods 

Decision Trees 

A regression tree contains numeric responses while a classification tree gives nominal 

responses e.g., “true” or “false”, or other categorical class labels. In building the tree, 

the goal is to split the x-variables along the coordinates into regions, such that a given 

measure of misclassification is as small as possible. Given a set of training data (x1, …, xn) 

with responses (y1, …, yn) where yi has a discrete value for k-groups, the positive count 

of group membership of object xi in region Rl is given by the index function I(yi = j) with 

a result of 1 if y = j and is 0 otherwise. The relative frequency pij of the j-th group in the 

lth region is therefore given by: 

𝑝𝑙𝑗 =
1

𝑛𝑙
 ∑ 𝐼(𝑦𝑖 = 𝑗)

𝑥𝑖∈𝑅𝑙

 

The relative frequencies of each group in region Rl can therefore be computed by varying 

j, and the objects in region Rl are resultantly classified to the group j(l), with the largest 

relative frequency i.e., the majority class. The aim is then to minimise misclassification 

by a chosen measure of quantifying misclassification in region Rl of tree T. The choice of 

criterion depends on the data set, with the main measures being:  

Misclassification Error: 
1

𝑛𝑙
 ∑ 𝐼(𝑦𝑖 ≠ 𝑗(𝑙)) = 1 −  𝑝𝑙,𝑗(𝑙)𝑥𝑖∈𝑅𝑙

 

Gini Index: ∑ 𝑝𝑙𝑗(1 −  𝑝𝑙𝑗)𝑘
𝑗=1  

Cross-Entropy or Deviance: − ∑ 𝑝𝑙𝑗 log(𝑝𝑙𝑗)𝑘
𝑗=1  

The misclassification error is the fraction of objects that do not belong to the majority 

class, while the Gini Index is the sum of products of relative frequencies of one class with 

the relative frequencies of all other classes. The cross-entropy is similar to the Gini Index 

in principle. Based on one of these criterions, the split point s with smallest measure of 

misclassification is selected. Both the optimal split point and the best split variable can 

be found by scanning through all x-variables of the dataset. The first branch of the tree 

is then given for the variable with the best split-point. This procedure is then repeated 

in both of the regions arising from the first split and the classification grows like a tree 
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resulting in smaller and smaller regions and measure of error. To avoid overfitting of the 

data, i.e., a separate region for each object with an error measure = 0, cross-validation 

methods are implemented to control tree-size with a complexity parameter (CP). This 

criterion uses one of the aforementioned misclassification criterions Ql(T) and the 

parameter α ≥ 0 to control tree size: 

𝐶𝑃𝛼(𝑇) =  ∑ 𝑛𝑙𝑄𝑙(𝑇) +  𝛼|𝑇|

|𝑇|

𝑙=1

 

where |T| is tree size and large values of α penalizes large trees.  

Decision trees are limited by their binary hierarchical structure, in which small changes 

in the data generates a slightly different initial split, that cascades through the tree and 

can result is entirely different subsequent splits60,107. “Bagging” is a procedure that uses 

the averaging of many trees to reduce this instability108. 

 

Support Vector Machines (SVMs) 

Discriminant analysis and linear learning machines strictly classify an object by which 

side of the separation hyperplane it lies. In the case of overlapping groups, one can allow 

for some objects to lie on the incorrect side of the separation margin. Given a 

hyperplane 

𝑓(𝑥) =  𝑥𝑇𝑤 +  𝑤0 

where w is a weighting vector and w0 is the offset (cf. DA), decision rules can then be 

defined as: 

𝐺(𝑥) = 𝑠𝑖𝑔𝑛(𝑥𝑇𝑤 + 𝑤0) 

A function 𝑓(𝑥) =  𝑥𝑇𝑤 + 𝑤0 with 𝑦𝑖𝑓(𝑥𝑖) > 0 can be found for all i given the 

classification vector y which lies in the interval [-1, +1], For the training points for class -

1 and 1, a hyperplane with the biggest margin between the two can be calculated. This 

forms the optimisation problem: 
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min (
1

2
‖𝑤‖2)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑥𝑖

𝑇𝑤 +  𝑤0) ≥ 1, 𝑖 = 1, … , 𝑛 

In the case of overlapping classes, a hyperplane can still be defined which allows some 

points to lie on the wrong side of the margin. The slack variable ξ can then be defined to 

modify the optimisation problem constraints: 

𝑚𝑖𝑛 {
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

}  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑦𝑖(𝑥𝑖
𝑇𝑤 +  𝑤0) ≥ 1 − 𝜉𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝜉𝑖  ≥ 0 

where the maximisation of the margin and the penalty for samples on the wrong side of 

the margin, are contained in the first and second terms respectively. Lagrangian theory 

can be used to solve this optimisation problem of quadratic function minimization with 

linear constraints. The weight vector of the decision function can therefore be given by: 

�̂� = ∑ 𝛼�̂�

𝑛

𝑖=1

𝑦𝑖𝑥𝑖  

which is the linear combination of the Lagrange multiplier and the training data. The 

training vectors at the class boundary or margin errors have a nonzero Lagrange 

multiplier alpha. These are termed support vectors and determine the boundary 

decision function.  

Basis expansions such as polynomials or splines can be used to transform the x-variables 

to their corresponding basis functions h(x) to enlarge the feature space: 

𝑓(𝑥) = ℎ(𝑥)𝑇𝑤 +  𝑤0 

These basis expansions effectively translate non-linear boundaries in the original 

dataspace to better separated linear boundaries in the enlarged space. The particular 

transformation information h(x) is not strictly required when the input features are 

represented in the optimization problem as their inner products. Therefore, only the 

kernel function K(xi,xj) is required giving the nonlinear decision function: 

𝑓(𝑥) =  ∑ 𝛼𝑖

𝑛

𝑖=1

𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑤0 
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with typical SVM kernel functions being: 

Gaussian:  

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) 

Sigmoidal:  

𝐾(𝑥𝑖 , 𝑥𝑗) = tanh (𝑎1𝑥𝑖
𝑇𝑥𝑗 + 𝑎2) 

Polynomial:  

𝐾(𝑥𝑖 , 𝑥𝑗) =  (𝑎1𝑥𝑖
𝑇𝑥𝑗 + 𝑎2)𝑝 

with parameters a1 and a2 of polynomial order p. 

 

k-Nearest Neighbours (k-NN) 

Given a data matrix X of mx (1-by-n) row vectors x1, x2, …, xmx and a data matrix Y of my 

(1-by-n) row vectors y1, y2, …, ymy, the distances between the vectors xs and yt are: 

Minkowski distance: 𝑑𝑠𝑡 =  √∑ |𝑥𝑠𝑗 −  𝑦𝑡𝑗|
𝑝𝑛

𝑗=𝑙

𝑝

 

where the special case p = 1 gives the City block distance, p = 2 gives the Euclidean 

distance, and p = ∞ gives the Chebychev distance. The Mahalanobis, Cosine, Correlation, 

Hamming, Jaccard, and Spearman distance metrics are other metrics used and will be 

described as they occur in text.  

Fix and Hodges first described the k-nearest neighbour (k-NN) method for classification 

in 1951. Compared to other methods, k-NN is a nonparametric classification method, as 

it works in the local of the considered data point to be classified without model fitting. 

A distance metric to determine the neighbourhood along with the closest k-points are 

used to estimate group membership of new objects. As a distance metric is used, input 

data should be auto-scaled (variable mean = 0 and variance = 1), with cross-validation 

being implemented to determine neighbourhood size k.  
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Given an object x, a distance metric (e.g., Euclidean distance) is used to determine the 

number of neighbours k by calculating the distance between object x and all other 

objects of the training data. The closest k nearest neighbours are denoted x1, …, xk, and 

using the known class memberships y(x1), …, y(xk) of the neighbours, the predicted class 

membership ŷ(x) is obtained as the most frequent occurring class amongst the 

neighbours. Hence, the parameter k strongly influences the decision boundary between 

groups. For instance, small values of k often result in overfitting as isolated regions in 

the dataspace are observed as separate from the main data. For k = 1 (1-NN), the 

predicted class membership will always be that of the nearest neighbour. If too large a 

k-value is used then underfitting can occur, with the decision boundary becoming 

‘blurred’ between groups.  

k-NN is often implemented as a reference method as it is conceptually simple, for its 

applicability to multiclass problems, and the fact that it does not require compact group 

clusters or linearly separable data. While no training of classifiers are needed, the 

complete — or a representative set of the data — is needed when classifying new 

objects. Due to the calculation of very many distances, larger data sets and many 

variables may be time consuming. 

 

Bayesian Optimisation 

To select the hyperparameter value for subsequent iterations, an acquisition function 

which helps in determining the next evaluation point is used. The “expected-

improvement” (EI) acquisition function ignores values that would increase the objective 

function while evaluating the expected degree of improvement. EI is given by: 

𝐸𝐼(𝑥, 𝑄) =  𝐸𝑄[max (0, 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥))] 

where xbest is defined as the lowest posterior mean location, and µQ(xbest) is the lowest 

posterior mean value.  

The evaluation of each function can require different lengths of time, especially 

considering the training of a SVM which can dwell over certain regions of the dataspace. 
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In this case, the “per-second” (pS) time-weighting can be introduced into the acquisition 

function, giving a cost-weighted expected improvement. During evaluations, a second 

Bayesian model is maintained to evaluate the function time as a function of position x, 

giving: 

𝐸𝐼𝑝𝑆(𝑥) =  
𝐸𝐼𝑄(𝑥)

𝜇𝑆(𝑥)
 

where µS(x) is the posterior mean of the timing Bayesian model.  

The acquisition function should also consider exploitation (regions where the objective 

function is deemed “low”) and exploration (regions where uncertainty is high) as a trade-

off. “Plus” is a modification of an acquisition function which estimates the 

overexploitation of a region. Given that: 

𝜎𝑄
2(𝑥) =  𝜎𝐹

2(𝑥) +  𝜎2 

where σF(x) is the standard deviation of the posterior objective function at x and σ is the 

posterior standard deviation of the additive noise. If tσ is now defined as the chosen 

exploration ratio, then the point x in the next iteration is deemed as overexploiting if 

the condition is satisfied: 

𝜎𝐹(𝑥) <  𝑡𝜎𝜎 

In this case the acquisition function’s kernel function is modified and the variance of σQ 

is increased, as suggested by Bull109. The new point generated is again tested for 

overexploitation before accepting the new x as the next evaluation point. 
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