Supplementary Material to "Geometry Dependent Localization of Surface Plasmons on Random Gold Nanoparticle Assemblies"

No Thumbnail Available
Date
2025-01-13
Journal Title
Journal ISSN
Volume Title
Publisher
Technische Universität Dresden
Abstract

Assemblies of plasmonic nanoparticles (NPs) support hybridized modes of localized surface plasmons (LSPs), which delocalize in geometrically well-ordered arrangements. Here, the hybridization behavior of LSPs in geometrically completely disordered arrangements of Au NPs fabricated by an e-beam synthesis method is studied. Employing electron energy loss spectroscopy in a scanning transmission electron microscope in combination with numerical simulations, the disorder-driven spatial and spectral localization of the coupled LSP modes that depend on the NP thickness is revealed. Below 0.4nm sample thickness (flat NPs), localization increases towards higher hybridized LSP mode energies. In comparison, above 10nm thickness, a decrease of localization (an increase of delocalization) with higher mode energies is observed. In the intermediate thickness regime, a transition of the energy dependence of the localization between the two limiting cases, exhibiting a transition mode energy with minimal localization, is observed. This behavior is mainly driven by the energy and thickness dependence of the polarizability of the individual NPs.

Description
Keywords
Citation
Attribution-NonCommercial-NoDerivatives 4.0 International