Repository logo
All of OPARA
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Schemmel, Thomas"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • ItemPublic Metadata
    GRK 2802: CHARACTERIZATION OF COMMERCIAL MgO-C REFRACTORY BRICKS BASED ON MgO-C RECYCLATE WITH VARYING TOTAL CARBON CONTENTS
    (Technische Universität Bergakademie Freiberg, 2025-11-26) Schramm, Alexander; Weidner, Anja; Biermann, Horst; Aneziris, Christos G.; Schemmel, Thomas
    In light of the increasing focus on the recycling of refractories, the properties of commercial MgO-C refractory bricks containing MgO C recyclate are of significant economic and ecological importance. It is essential to consider that incorporating MgO-C recyclate can lead to increased variation in the material composition and, consequently, in the properties of MgO-C grades. In the present study, two commercially available grades of MgO-C bricks containing 47.5 wt.% MgO-C recyclate were characterized. The MgO-C recyclates of both grades were taken from different sources and differed particularly in their carbon content, which resulted in different total carbon contents of both MgO-C brick grades. In addition to determining fundamental properties of both MgO-C brick grades (e. g., total carbon content, bulk density, open porosity, and cold crushing strength), XRD analysis, refractoriness under load (RUL) tests, and four-point bending tests at 1000 °C in an argon atmosphere were conducted. A lower total carbon content resulted in an increased bulk density, higher thermal expansion and increased strength. Compared to a commercial MgO-C grade made from entirely fresh raw materials, the results of the RUL and bending tests revealed no detrimental effects through the incorporation of MgO-C recyclate. Despite different total carbon contents, both MgO-C grades with recyclate exhibited improved refractoriness in the RUL tests compared to the material containing only fresh raw materials.
  • ItemPublic Metadata
    GRK 2802: Characterization of MgO-C recyclate and commercial MgO-C refractory bricks with and without Recyclate
    (Technische Universität Bergakademie Freiberg, 2025-11-13) Schramm, Alexander; Stadtmüller, Till M. J.; Hubálková, Jana; Schimpf, Christian; Wüstefeld, Christina; Schemmel, Thomas; Aneziris, Christos G.; Weidner, Anja; Biermann, Horst
    In light of the increasing focus on the recycling of refractories, the properties of commercial MgO-C refractory bricks containing MgO-C recyclate are of significant economic and ecological importance. In the present study, MgO-C recyclate and two commercially available MgO-C bricks – one grade consisting exclusively of fresh raw materials while the other containing 47.5 wt.% MgO-C recyclate – were comprehensively characterized. This involved the use of X-ray computed tomography, scanning electron microscopy, X ray fluorescence analysis, X-ray diffraction, as well as density and porosity measurements. The MgO C recyclate exhibited a heterogeneous composition consisting of MgO aggregates and contained an increased content of impurities compared to fresh MgO raw materials. The incorporation of MgO C recyclate as a raw material for commercial MgO-C bricks resulted in a decrease of the average MgO aggregate size, a higher porosity with a decrease in the median pore size and a reduced CaO/SiO2 ratio of the corresponding MgO-C brick grade. Furthermore, the MgO-C grade with 47.5 wt.% MgO-C recyclate exhibited a higher cold crushing strength, but a reduced oxidation resistance.
  • ItemPublic Metadata
    GRK 2802: HIGH-TEMPERATURE COMPRESSION TESTS AND ACCOMPANYING SEM INVESTIGATIONS OF MgO-C REFRACTORIES BASED ON FRESH MgO AND RECYCLATE
    (Technische Universität Bergakademie Freiberg, 2025-08-27) Schramm, Alexander; Weidner, Anja; Biermann, Horst; Stadtmüller, Till M. J.; Aneziris, Christos G.; Schemmel, Thomas
    With regard to the increasingly desired recycling of refractories, the properties of MgO-C containing recyclate are of high economic and ecological relevance. Two commercially available grades were studied to evaluate the influence of recyclate in MgO-C materials: MgO-C consisting only of fresh MgO as well as MgO-C with 50 wt.% recyclate. In this study, compression tests on these MgO-C materials were performed at room temperature, 1000°C and 1300°C. In order to investigate the microstructure and to identify the occurring damage mechanisms, scanning electron microscopy (SEM) investigations were carried out. The compression tests provided higher strengths at room temperature and at 1000°C for the MgO-C grade with recyclate compared to the grade with only fresh MgO and comparable strengths at 1300°C. Thus, the use of recycled agglomerates had no negative effect on the compressive strength.

DSpace software copyright © 2002-2025 LYRASIS

  • Imprint and Privacy Statement
  • End User Agreement