GRK 2802: Effect of Oxygen on Thermophysical Properties of Molten High-Silicon Electrical Steels and Its Impact on Bubble Formation Behavior
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The presence of oxygen in liquid steels has a considerable influence on their properties. Higher oxygen concentrations are typical for unkilled melts, after tapping from the basic oxygen furnace (BOF) or during secondary metallurgy. This influences thermophysical properties, for instance, surface tension, due to the surface activity of dissolved oxygen. Processes in secondary metallurgy or the interaction of the melt with the refractory material will be different. In this study, density and surface tension of molten high-silicon electrical steels are analyzed dependent of different oxygen contents, which are comparable to industrial melts during secondary metallurgy. The maximum bubble pressure method was used, and total oxygen contents between 77 and 300 ppm were taken into consideration. The silicon content of the steels is varied between 3 and 6 mass-pct. The effect of oxygen on the bubble formation behavior during decarburization in a liquid steel melt is also discussed. The results make it possible to calculate the size of bubbles that form in a melt. These findings are transferred to the processing of electrical steels, to vacuum treatments like the RH or VOD process. Reactions such as decarburization and the dissolution behavior of alloying agents are described more precisely based on these insights.
