The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.
Benchmark dataset using historical images for an automated evaluation of feature matching methods
TranslatedTitle: Benchmarkdatensatz historischer Bilder für die Evaluation von Methoden zur Merkmalszuordnung
Metadaten
Ergänzende Titel | TranslatedTitle: Benchmarkdatensatz historischer Bilder für die Evaluation von Methoden zur Merkmalszuordnung | |
Weitere mitwirkende Personen, Institutionen oder Unternehmen | bmbf - Funder | |
Weitere mitwirkende Personen, Institutionen oder Unternehmen | Sander, Münster - Medienzentrum (MZ) (orcid: 0000-0001-9344-912X) - ProjectLeader | |
Weitere mitwirkende Personen, Institutionen oder Unternehmen | Deutsche Fotothek - SLUB Dresden (Other: http://www.deutschefotothek.de) - Producer | |
Für den Inhalt der Forschungsdaten verantwortliche Person(en) | Maiwald, Ferdinand - Institut für Photogrammetrie und Fernerkundung (IPF) (ORCID: 0000-0002-2456-9731) | |
Zugrundeliegende Forschungsobjekte | Media: Historical images and their relative orientation using the Trifocal Tensor | |
Kurzbeschreibung | Image dataset to the submitted ISPRS GSW2019 publication "Generation of a benchmark dataset using historical photographs for an automated evaluation of different feature matching methods". This dataset contains eight triples of historical images for four different sights. Images were chosen with respect to their possible matching quality. The images show combined differences in illumination, field of view, viewpoints, blurring and slight rotation. Some of the images show building reflections in water or extreme shadowing. The images are saved after digitization in full quality as *.tif files with a maximum sidelength of 3543 Pixels. Since no inner orientation could be determined for all image triples the Trifocal Tensor is provided - calculated using Ressl's method (Ressl, 2003). Additional metadata information, copyright disclaimer and permalinks are provided in License.txt. The purpose of the dataset is the evaluation of different feature detection and matching methods using the given orientation with the Trifocal Tensor. Point transfer calculation is possible using the equation on p. 382 in Multiple View Geometry in Computer Vision (Hartley and Zisserman, 2003). Another method uses the corrected Fundamental Matrices calculated in eq. 15.8 from the Trifocal Tensor on p. 374 in Multiple View Geometry in Computer Vision (Hartley and Zisserman, 2003). Ressl, C., 2003. Geometry, constraints and computation of the trifocal tensor. TU Wien. Hartley, R. and Zisserman, A., 2003. Multiple view geometry in computer vision. Cambridge university press. | |
Angewendete Methoden oder Verfahren | Trifocal Tensor, Fundamental Matrix - Feature matching methods: MSER, ORB/SURF, RIFT - Outlier removal methods: RANSAC, FSC | |
Weitere erklärende Angaben zu den Daten | The images were taken from around 1880-1992 and digitized for the purpose of this publication from 2018-2019. | |
Länder, auf die sich die Daten beziehen | GERMANY | de |
Region(en) auf die sich die Daten beziehen | Sachsen | |
Region(en) auf die sich die Daten beziehen | Dresden | |
Weitere Schlagwörter | computer vision | |
Weitere Schlagwörter | photographs | |
Weitere Schlagwörter | photogrammetry | |
Weitere Schlagwörter | orientation | |
Weitere Schlagwörter | detection | |
Sprache | eng | |
Entstehungsjahr oder Entstehungszeitraum | 2018-2019 | |
Veröffentlichungsjahr | 2019 | |
Herausgeber | Technische Universität Dresden | |
Referenzen auf ergänzende Materialien | IsPartOf: 123456789/1371 (Handle) | |
Inhalt der Forschungsdaten | Text, Image, Dataset: Text: License and Readme file (License.txt, Readme.txt) - Image: 24 historical images - Dataset: coordinate list, orientation information, matching results | |
Eigene Spezifikation der Nutzungsrechte | ||
Inhaber der Nutzungsrechte | Technische Universität Dresden | |
Inhaber der Nutzungsrechte | SLUB Dresden - Deutsche Fotothek | |
Nutzungsrechte des Datensatzes | CC-BY-SA-4.0 | |
Nähere Beschreibung der/s Fachgebiete/s | The data can be evaluated using methods of Photogrammetry and Computer Vision | |
Angabe der Fachgebiete | Geological Science | de |
Angabe der Fachgebiete | History | de |
Angabe der Fachgebiete | Computer Science | de |
Titel des Datensatzes | Benchmark dataset using historical images for an automated evaluation of feature matching methods |
Dateien zu dieser Ressource
Die Datenpakete erscheinen in:
-
Benchmark dataset using historical images for an automated evaluation of different feature matching methods [1]
This dataset contains eight triples of historical images for four different sights. Images were chosen with respect to their possible matching quality. The images show combined differences in illumination, field of view, viewpoints, blurring and slight rotation. Some of the images show building reflections in water or extreme shadowing. The images are saved after digitization in full quality as *.tif files with a maximum sidelength of 3543 Pixels. Since no inner orientation could be determined for all image triples the Trifocal Tensor is provided - calculated using Ressl's method (Ressl, 2003). Additional metadata information, copyright disclaimer and permalinks are provided in License.txt. The purpose of the dataset is the evaluation of different feature detection and matching methods using the given orientation with the Trifocal Tensor. Point transfer calculation is possible using the equation on p. 382 in Multiple View Geometry in Computer Vision (Hartley and Zisserman, 2003). Another method uses the corrected Fundamental Matrices calculated in eq. 15.8 from the Trifocal Tensor on p. 374 in Multiple View Geometry in Computer Vision (Hartley and Zisserman, 2003). Ressl, C., 2003. Geometry, constraints and computation of the trifocal tensor. TU Wien. Hartley, R. and Zisserman, A., 2003. Multiple view geometry in computer vision. Cambridge university press.