The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.

Zur Kurzanzeige

Subtitle: Jupyter Notebooks for Data Regression and Graph Generation

Metadaten

Ergänzende TitelSubtitle: Jupyter Notebooks for Data Regression and Graph Generation
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Buchwald, Thomas - TU BAF (ORCID: 0000-0002-2953-0510)
Beschreibung der weiteren DatenverarbeitungThe experimental data (cake filtration experiments) has been analysed by different methods, most importantly nonlinear parameter estimation. Several different model equations have been used to derive additional theoretical insight.
KurzbeschreibungThis collection belongs to the doctoral thesis "Nonlinear Parameter Estimation of Experimental Cake Filtration Data". Most of the content are Jupyter notebooks which contain the Python code which reproduces graphs found in the thesis from the original experimental data. The lab practice dataset that contains 500 filtration experiments is contained in the folder for section 3.5. The notebooks are not strictly sorted by section. At any rate, the Readme will guide you to the notebook which produces a certain graph, if it is not part of the main notebook of that specific section. The original Python environment was set up with Anaconda. Please use the provided .yml file to create a Python environment which contains all the necessary packages. Some notebooks may not work with the most current versions of the packages, so updating is not necessarily a good idea.
Angewendete Methoden oder VerfahrenNonlinear Parameter Estimation
Weitere erklärende Angaben zu den DatenThe experimental data was generated between 2010 and 2021 on two different pressure filtration apparatuses.
Länder, auf die sich die Daten beziehenGERMANYde
Weitere SchlagwörterJupyter notebook
Weitere SchlagwörterPython
Weitere SchlagwörterDataset
Weitere SchlagwörterCake Filtration
Spracheeng
Entstehungsjahr oder Entstehungszeitraum2010-2021
Veröffentlichungsjahr2021
HerausgeberTechnische Universität Bergakademie Freiberg
Referenzen auf ergänzende MaterialienIsPartOf: 123456789/1955 (Handle)
Inhalt der ForschungsdatenText, Image, Dataset, Model: Experimental data and Jupyter notebooks which contain Python code that analyses the dataset and produces all the graphs contained in the PhD thesis.
Inhaber der NutzungsrechteTechnische Universität Bergakademie Freiberg
Nutzungsrechte des DatensatzesCC-BY-4.0
Eingesetzte SoftwareResource Processing: Python 3.7
Nähere Beschreibung der/s Fachgebiete/sMechanical Solid/Liquid Separation, Cake Filtration
Angabe der FachgebieteEngineeringde
Titel des DatensatzesExperimental Cake Filtration Data and Code for Analysis, Graph Generation


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Die Datenpakete erscheinen in:

  • Experimental Data and Diagrams [1]Open Access Icon
    This collection belongs to the doctoral thesis "Nonlinear Parameter Estimation of Experimental Cake Filtration Data". Most of the content are Jupyter notebooks which contain the Python code which reproduces graphs found in the thesis from the original experimental data. The lab practice dataset that contains 500 filtration experiments is contained in the folder for section 3.5. The notebooks are not strictly sorted by section. At any rate, the Readme will guide you to the notebook which produces a certain graph, if it is not part of the main notebook of that specific section. The original Python environment was set up with Anaconda. Please use the provided .yml file to create a Python environment which contains all the necessary packages. Some notebooks may not work with the most current versions of the packages, so updating is not necessarily a good idea.

Zur Kurzanzeige