The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.

Zur Kurzanzeige

Metadaten

Für den Inhalt der Forschungsdaten verantwortliche Person(en)Loebel, Erik
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Scheinert, Mirko
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Horwath, Martin
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Heidler, Konrad
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Christmann, Julia
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Phan, Long Duc
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Humbert, Angelika
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Xiao Xiang, Zhu
KurzbeschreibungSupplementary material to the manuscript: Loebel, E., Scheinert, M., Horwath, M., Heidler, K., Christmann, J., Phan, L., Humbert, A., Zhu, X. (2022): Extracting glacier calving fronts by deep learning: the benefit of multi-spectral, topographic and textural input features, IEEE Transactions on Geoscience and Remote Sensing. The dataset is composed of three parts. Firstly, this dataset provides 728 manually delineated glacier calving front positions of 23 Greenland and 2 Antarctic outlet glaciers from 2013 to 2021. For that, we provide ocean masks and frontal positions as Polygon or LineString Shapefiles respectively. For manual delineation, we used optical Landsat-8 imagery. Secondly, we provide 995 input raster subsets (17 layers each) with their corresponding, manually delineated, segmentation masks. Input raster subsets have dimensions of 512 pixels by 512 pixels and are available in both png and georeferenced tif format. These machine learning ready raster subsets are optimized for training and validating artificial neural networks. Thirdly, we lay out our source code we use for neural network training and accuracy assessment. The code uses python3 and shell scripts.
Region(en) auf die sich die Daten beziehenGreenland, Antarctica
Weitere Schlagwörterremote sensing
Weitere Schlagwörtersatellite imagery
Weitere Schlagwörtermachine learning
Weitere Schlagwörterreference data
Entstehungsjahr oder Entstehungszeitraum2022
Veröffentlichungsjahr2022
HerausgeberTechnische Universität Dresden
Referenzen auf ergänzende MaterialienIsPartOf: 123456789/5680 (Handle)
Inhalt der ForschungsdatenDataset, Workflow: 728 manually delineated glacier calving front positions of 23 Greenland and 2 Antarctic outlet glaciers from 2013 to 2021 (provided as Shapefiles as well as machine learning ready raster subsets) and source code for automated extraction by deep learning.
Inhaber der NutzungsrechteTechnische Universität Dresden
Nutzungsrechte des DatensatzesCC-BY-NC-4.0
Angabe der FachgebieteGeographyde
Angabe der FachgebieteGeological Sciencede
Angabe der FachgebieteComputer Sciencede
Angabe der FachgebieteOtherde
Titel des DatensatzesManually delineated glacier calving fronts of 23 Greenland and 2 Antarctic outlet glaciers from 2013 to 2021 and source code for automated extraction by deep learning


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Die Datenpakete erscheinen in:

  • Change pattern identification of marine-terminating outlet glaciers [5]Open Access Icon
    Marine-terminating outlet glaciers experience a combination of seasonal and climate-driven change. Nearby glaciers exhibit very different retreat and advance behavior despite being situated in similar climatic conditions. This highlights the demand to essentially improve our understanding of the driving mechanisms and to provide a basis for parameterizations of oceanic forcing that are fed into mass-loss projections. Temporal changes of glacial flow velocities are presumably linked to the evolution of the subglacial hydrological system. Depending on the type of subglacial system, the temporal acceleration of the glacier is represented by different characteristics. While this is typically investigated only along a central flow line, the spatial distribution contains more information on the cause of the acceleration. In a similar way, the spatial pattern of acceleration due to changes at the calving front is likely driven by upstream propagation of changes in stresses. Hence, understanding the mechanisms in detail requires an analysis of different physical variables in high temporal and spatial resolution and combination with ice modelling. With the new generation of satellites the era of big data has started in glaciology, and new efficient methods to analyze change patterns are required.

Zur Kurzanzeige