The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.
Monitoring data for the publication "Fast inundation simulation with RIM2D for urban flood risk assessment and forecasting"
Metadaten
Weitere mitwirkende Personen, Institutionen oder Unternehmen | Krebs, Peter - TU Dresden - ProjectLeader | |
Weitere mitwirkende Personen, Institutionen oder Unternehmen | Apel, Heike - GFZ Potsdam (ORCID: 0000-0002-8852-652X) - Researcher | |
Für den Inhalt der Forschungsdaten verantwortliche Person(en) | Benisch, Jakob - TU Dresden (ORCID: 0000-0002-4782-6024) | |
Für den Inhalt der Forschungsdaten verantwortliche Person(en) | Helm, Björn - TU Dresden | |
Für den Inhalt der Forschungsdaten verantwortliche Person(en) | Becker, Stephan - TU Dresden | |
Für den Inhalt der Forschungsdaten verantwortliche Person(en) | Grummt, Sebastian - TU Dresden | |
Verwendete Forschungsinstrumente | NIVUS POA / mini sensors, onset HOBO U-20 sensors | |
Zugrundeliegende Forschungsobjekte | PhysicalObject: Discharge data from rain events in the sewer network of Dresden | |
Kurzbeschreibung | Monitoring data used for model calibration and evaluation from the Urban Observatory of the Chair of Urban Water Management | |
Angewendete Methoden oder Verfahren | Water discharge measurement using mean velocity and water level / sewer profile measured by ultrasonic and pressure sensors at three monitoring stations (MS2 / Before MS2 / MS5) | |
Länder, auf die sich die Daten beziehen | GERMANY | de |
Koordinaten von Orten, auf die sich die Daten beziehen | (MS2) "51.004937, 13.844218" | |
Koordinaten von Orten, auf die sich die Daten beziehen | (Before MS2) "13.84344031, 51.00444264 " | |
Koordinaten von Orten, auf die sich die Daten beziehen | (MS5) "13.84466506, 51.00408105" | |
Region(en) auf die sich die Daten beziehen | Saxony | |
Weitere Schlagwörter | pluvial flood, urban inundation, flood modelling, RIM2D, GPU acceleration, heavy precipitation, urban flood risk, flood forecasting | |
Entstehungsjahr oder Entstehungszeitraum | 2016-2021 | |
Veröffentlichungsjahr | 2023 | |
Herausgeber | Technische Universität Dresden | |
Referenzen auf ergänzende Materialien | IsPartOf: 123456789/5959 (Handle) | |
Inhalt der Forschungsdaten | Dataset: Time Series Data | |
Inhaber der Nutzungsrechte | Technische Universität Dresden | |
Nutzungsrechte des Datensatzes | CC-BY-4.0 | |
Nähere Beschreibung der/s Fachgebiete/s | Water Management | |
Angabe der Fachgebiete | Environmental Science and Ecology | de |
Titel des Datensatzes | Monitoring data for the publication "Fast inundation simulation with RIM2D for urban flood risk assessment and forecasting" |
Dateien zu dieser Ressource
Die Datenpakete erscheinen in:
-
Supplementary Material - Fast inundation simulation with RIM2D for urban flood risk assessment and forecasting [1]
Urban pluvial flooding is a growing concern worldwide as consequence of rising urban population and climate change induced increases in heavy rainfall. Easy-to-implement and fast simulation tools are needed to cope with this challenge. This study describes the development of the parsimonious, GPU-accelerated hydraulic model RIM2D for urban pluvial flood simulations. This is achieved by considering the built-up urban area as flow obstacles, and by introducing capacity-based approaches to consider urban drainage by infiltration on pervious surfaces and sewer drainage from roofs and sealed surfaces. The model performance was analyzed by simulating 8 heavy rainfall events in a test area in the city of Dresden, Germany. For these events detailed discharge measurements of sewer discharge are available, providing a unique dataset for evaluating the sewer drainage simulation, which is of high importance for realistic pluvial inundation simulations in urban areas. We show that the model simulates the temporal dynamics of the sewer discharge and the sewer volume within acceptable ranges. Moreover, the erratic variation of the simulated to measured sewer discharge suggests that the deviations from the measurements are caused by the precipitation input rather than the model simplifications. We conclude that RIM2D is a valid tool for urban inundation simulation. Its short simulation runtimes allow probabilistic flood risk assessments and operational flood forecasts.