The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.

The combination of direct laser interference patterning (DLIP) with laser-induced periodic surface structures (LIPSS) enables the fabrication of functional surfaces reported for a wide spectrum of materials. The process throughput is usually increased by applying higher average laser powers. However, this causes heat accumulation impacting the roughness and shape of produced surface patterns. Consequently, the effect of substrate temperature on the topography of fabricated features requires detailed investigations. In this study, steel surfaces were structured with line-like patterns by ps-DLIP at 532 nm. To investigate the influence of substrate temperature on the resulting topography, a heating plate was used to adjust the temperature. Heating to 250 ∘C led to a significant reduction of the produced structure depths, from 2.33 to 1.06 µm. The reduction is associated with the appearance of a different LIPSS type, depending on the grain orientation of the substrates and laser-induced superficial oxidation. This study revealed a strong effect of substrate temperature, which is also to be expected when heat accumulation effects arise from processing surfaces at high average laser power.

Diese Sammlung ist Open Access und öffentlich zugänglich.