Dear users of OpARA, on Thu, 29 Feb. and Fri, 1 Mar. 2024 this website will be unavailable because of a major service update. If everything goes well, a renewed OpARA website will be back on Friday afternoon. During this period, it will not be possible to access, edit or publish any data on OpARA.

High-speed processes can lead to significant technological advantages like an increased formability, reduced springback or an improved quality of cutting edges. For conventional forming processes, quasi-static conditions are a good approximation and numerical process optimisation is state of the art. However, there is still a need for research in the field of material characterisation for high speed forming and cutting processes. Production technologies with high velocities leads to high strain rates and the dependency of strain hardening and failure behaviour on the forming velocity cannot be neglected. Therefore, the data of the material behaviour at high strain rates is required for modelling high velocity processes. The challenge here is the measurement of relevant process quantities due to short process time that requires a very high sampling rate and the limited size and accessibility of the specimen. In this context, an inverse method for determining material characteristics at high strain rates was developed. The approach here is the measurement of auxiliary test parameters, which are easier to measure and then used as input data for an inverse numerical simulation. Two devices were implemented for different ranges of strain rates: a pneumatically driven device for strain rates up to 1.000 1/s and an electromagnetically driven accelerator for strain rates up to 100.000 1/s. The method developed by Psyk et al. is presented in detail in "Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulation".

This project is open access and publicly accessible.


Collections in this community

Anonymous users may not see all communities or collections. Please log in to see your accessible communities and colletions.

Recent Submissions