The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.
ListDB RepThree: Stationary camera videos and trajectories at a signalized 3-way intersection taken on different Wednesdays over a 3-year period (2019, 2020 with Covid-19 lockdown, 2022)
Subtitle: Dresden (Germany): Sidonienstrasse / St. Petersburger Strasse
Metadaten
Ergänzende Titel | Subtitle: Dresden (Germany): Sidonienstrasse / St. Petersburger Strasse | |
Für den Inhalt der Forschungsdaten verantwortliche Person(en) | Bäumler, Maximilian - Technische Universität Dresden (ORCID: 0000-0003-4052-0572) | |
Verwendete Forschungsinstrumente | GoPro Hero Session 4 | |
Verwendete Forschungsinstrumente | DJI Action 2 | |
Zugrundeliegende Forschungsobjekte | Other: Traffic observation videos of an intersection | |
Kurzbeschreibung | The dataset can be used to study road traffic before, during, and after Covid-19. Moreover, the dataset can help to derive test scenarios for scenario-based testing, for example. The dataset includes seven days of drone videos and their corresponding trajectories recorded in Dresden, Germany, at a signalized 3-way intersection. Data collection in 2020 also took place on days with Covid-19 conditional lockdown, including curfew. The data collection followed a fixed sampling plan covering four different time slots daily (weekdays: 07.30-09.00 / 10.00-11.30 / 13.00-14.30 / 15.30-17.00) within 2019-2022. Moreover, extensive metadata is provided following the ListDB specification (w3id.org/listdb). Source trajectory data was extracted from video using DataFromSky TrafficSurvey (https://ai.datafromsky.com/aerial) - an AI video analytics-based service for gathering advanced traffic data for researchers and traffic engineers. Main facts: 1056 minutes of video (2019: 160 minutes / 2020: 560 minutes / 2022: 336 minutes). The analysed trajectories are available for each video. We sincerely thank DataFromSky for supporting the analysis. The video-based traffic observation was conducted within the MOTUS project (19FS2015A; motus-project.com) and supported by the mFUND grant by Germany’s Federal Ministry for Digital and Transport. | |
Angewendete Methoden oder Verfahren | The videos were collected using consumer cameras (GoPro Hero Session 4; DJI Action 2). The metadata was collected using the ListDBApp (see .apk). The source trajectory data was extracted from video using DataFromSky TrafficSurvey (https://ai.datafromsky.com/aerial) - an AI video analytics-based service for gathering advanced traffic data for researchers and traffic engineers. | |
Inhaltsverzeichnis | - Sample video data - Sample trajectory data - Video data - Trajectory data - ListDBApp to collect metadata - ListDB codebook to specify the metadata | |
Länder, auf die sich die Daten beziehen | GERMANY | de |
Koordinaten von Orten, auf die sich die Daten beziehen | 51.041777, 13.735755 | |
Region(en) auf die sich die Daten beziehen | Saxony | |
Region(en) auf die sich die Daten beziehen | Dresden | |
Weitere Schlagwörter | camera | |
Weitere Schlagwörter | traffic observation | |
Weitere Schlagwörter | trajectories | |
Weitere Schlagwörter | Data From Sky | |
Weitere Schlagwörter | video analysis | |
Weitere Schlagwörter | object detection | |
Weitere Schlagwörter | traffic scenario | |
Weitere Schlagwörter | autonomous driving | |
Weitere Schlagwörter | covid-19 | |
Weitere Schlagwörter | corona | |
Weitere Schlagwörter | lockdown | |
Weitere Schlagwörter | curfew | |
Sprache | eng | |
Entstehungsjahr oder Entstehungszeitraum | 2019-2022 | |
Veröffentlichungsjahr | 2023 | |
Herausgeber | Technische Universität Dresden | |
Referenzen auf ergänzende Materialien | IsPartOf: 123456789/5882 (Handle) | |
Referenzen auf ergänzende Materialien | IsPartOf: https://w3id.org/listdb/onto (URL) | |
Referenzen auf ergänzende Materialien | IsPartOf: https://doi.org/10.26128/2023.40 (URL) | |
Inhalt der Forschungsdaten | Text, Audiovisual, Dataset, Software: Video: Videos containing traffic observation (.mp4) Dataset: Mined trajectories (.csv; .tlgx) Software: ListDBApp to collect metadata (.apk) Text: Text files containing metadata (.txt; .csv) Text: Codebook specifying the metadata (.pdf) | |
Inhaber der Nutzungsrechte | Technische Universität Dresden | |
Nutzungsrechte des Datensatzes | CC-BY-NC-4.0 | |
Eingesetzte Software | Resource Production: ListDBApp (Android; self-developed) | |
Eingesetzte Software | Resource Processing: Data From Sky Traffic Survey | |
Angabe der Fachgebiete | Engineering | de |
Titel des Datensatzes | ListDB RepThree: Stationary camera videos and trajectories at a signalized 3-way intersection taken on different Wednesdays over a 3-year period (2019, 2020 with Covid-19 lockdown, 2022) |
Dateien zu dieser Ressource
Die Datenpakete erscheinen in:
-
ListDB: Representative datasets of video-based traffic observations [3]
Representative datasets of video-based traffic observations according to the ListDB specification (w3id.org/listdb/). We collected the videos mainly at different intersections in Germany following a fixed sampling plan to ensure representativity. We describe the sampling plan and the collection procedure in the following paper: Maximilian Bäumler, Matthias Lehmann, Günther Prokop (2023). "Generating representative test scenarios: The "Fuse for Representativity" (FUSE4Rep) process model to collect and analyse traffic observation data". In: 27th ESV Conference. Yokohama. Paper NO.23-0122-O The paper is available here: https://index.mirasmart.com/27esv/PDFfiles/27ESV-000122.pdf