The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.

Zur Kurzanzeige

Subtitle: Dresden (Germany): Sidonienstrasse / St. Petersburger Strasse

Metadaten

Ergänzende TitelSubtitle: Dresden (Germany): Sidonienstrasse / St. Petersburger Strasse
Für den Inhalt der Forschungsdaten verantwortliche Person(en)Bäumler, Maximilian - Technische Universität Dresden (ORCID: 0000-0003-4052-0572)
Verwendete ForschungsinstrumenteGoPro Hero Session 4
Verwendete ForschungsinstrumenteDJI Action 2
Zugrundeliegende ForschungsobjekteOther: Traffic observation videos of an intersection
KurzbeschreibungThe dataset can be used to study road traffic before, during, and after Covid-19. Moreover, the dataset can help to derive test scenarios for scenario-based testing, for example. The dataset includes seven days of drone videos and their corresponding trajectories recorded in Dresden, Germany, at a signalized 3-way intersection. Data collection in 2020 also took place on days with Covid-19 conditional lockdown, including curfew. The data collection followed a fixed sampling plan covering four different time slots daily (weekdays: 07.30-09.00 / 10.00-11.30 / 13.00-14.30 / 15.30-17.00) within 2019-2022. Moreover, extensive metadata is provided following the ListDB specification (w3id.org/listdb). Source trajectory data was extracted from video using DataFromSky TrafficSurvey (https://ai.datafromsky.com/aerial) - an AI video analytics-based service for gathering advanced traffic data for researchers and traffic engineers. Main facts: 1056 minutes of video (2019: 160 minutes / 2020: 560 minutes / 2022: 336 minutes). The analysed trajectories are available for each video. We sincerely thank DataFromSky for supporting the analysis. The video-based traffic observation was conducted within the MOTUS project (19FS2015A; motus-project.com) and supported by the mFUND grant by Germany’s Federal Ministry for Digital and Transport.
Angewendete Methoden oder VerfahrenThe videos were collected using consumer cameras (GoPro Hero Session 4; DJI Action 2). The metadata was collected using the ListDBApp (see .apk). The source trajectory data was extracted from video using DataFromSky TrafficSurvey (https://ai.datafromsky.com/aerial) - an AI video analytics-based service for gathering advanced traffic data for researchers and traffic engineers.
Inhaltsverzeichnis- Sample video data - Sample trajectory data - Video data - Trajectory data - ListDBApp to collect metadata - ListDB codebook to specify the metadata
Länder, auf die sich die Daten beziehenGERMANYde
Koordinaten von Orten, auf die sich die Daten beziehen51.041777, 13.735755
Region(en) auf die sich die Daten beziehenSaxony
Region(en) auf die sich die Daten beziehenDresden
Weitere Schlagwörtercamera
Weitere Schlagwörtertraffic observation
Weitere Schlagwörtertrajectories
Weitere SchlagwörterData From Sky
Weitere Schlagwörtervideo analysis
Weitere Schlagwörterobject detection
Weitere Schlagwörtertraffic scenario
Weitere Schlagwörterautonomous driving
Weitere Schlagwörtercovid-19
Weitere Schlagwörtercorona
Weitere Schlagwörterlockdown
Weitere Schlagwörtercurfew
Spracheeng
Entstehungsjahr oder Entstehungszeitraum2019-2022
Veröffentlichungsjahr2023
HerausgeberTechnische Universität Dresden
Referenzen auf ergänzende MaterialienIsPartOf: 123456789/5882 (Handle)
Referenzen auf ergänzende MaterialienIsPartOf: https://w3id.org/listdb/onto (URL)
Referenzen auf ergänzende MaterialienIsPartOf: https://doi.org/10.26128/2023.40 (URL)
Inhalt der ForschungsdatenText, Audiovisual, Dataset, Software: Video: Videos containing traffic observation (.mp4) Dataset: Mined trajectories (.csv; .tlgx) Software: ListDBApp to collect metadata (.apk) Text: Text files containing metadata (.txt; .csv) Text: Codebook specifying the metadata (.pdf)
Inhaber der NutzungsrechteTechnische Universität Dresden
Nutzungsrechte des DatensatzesCC-BY-NC-4.0
Eingesetzte SoftwareResource Production: ListDBApp (Android; self-developed)
Eingesetzte SoftwareResource Processing: Data From Sky Traffic Survey
Angabe der FachgebieteEngineeringde
Titel des DatensatzesListDB RepThree: Stationary camera videos and trajectories at a signalized 3-way intersection taken on different Wednesdays over a 3-year period (2019, 2020 with Covid-19 lockdown, 2022)


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Die Datenpakete erscheinen in:

  • ListDB: Representative datasets of video-based traffic observations [3]Open Access Icon
    Representative datasets of video-based traffic observations according to the ListDB specification (w3id.org/listdb/). We collected the videos mainly at different intersections in Germany following a fixed sampling plan to ensure representativity. We describe the sampling plan and the collection procedure in the following paper: Maximilian Bäumler, Matthias Lehmann, Günther Prokop (2023). "Generating representative test scenarios: The "Fuse for Representativity" (FUSE4Rep) process model to collect and analyse traffic observation data". In: 27th ESV Conference. Yokohama. Paper NO.23-0122-O The paper is available here: https://index.mirasmart.com/27esv/PDFfiles/27ESV-000122.pdf

Zur Kurzanzeige