The OPARA service was recently upgraded to a new technical platform. You are visiting the outdated OPARA website. Please use https://opara.zih.tu-dresden.de/ for new data submissions. Previously stored data will be migrated in near future and then the old version of OPARA will finally be shut down. Existing DOIs for data publications remain valid.

In high strain rate forming processes two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented FE-model and experimental results are based on https://doi.org/10.3390/app12052299 where uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically to understand the influence of adiabatic heating of the workpiece during deformation under high-speed loading. A thermal camera and a pyrometer were used for temperature measurement in the fracture region in addition to the measurement of force and elongation. The numerical simulations are carried out in LS-Dyna using the GISSMO model for modeling damage and failure.

This collection is open access and publicly accessible.

 

Recent Submissions